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Abstract—Network coding is a class of routing algorithms
offering increased throughput and improved robustness to ran-
dom failures. With traditional routing, intermediate nodes in the
network may only forward unmodified packets. With network
coding, instead, intermediate nodes are allowed to forward
linear combinations of received packets. Original data can be
reconstructed after collecting sufficiently many linear combina-
tions. Current file sharing systems offer either low overhead
and high bandwidth with no privacy, or acceptable privacy at
very low speed. Thanks to network coding, a general-purpose
P2P network can obtain a privacy/performance tradeoff that
may be considered reasonable in most real-world scenarios.
In this paper we present an integrity strategy for network
coding-based P2P anonymous systems, specifically designed to
preserve the anonymity of peers. Our approach is significantly
easier to implement than current solutions when anonymity is
required. We implement the cryptographic algorithms on which
our method is based and provide performance figures. We also
define verification strategies which use batching for improved
performances together with an efficiency analysis.

I. INTRODUCTION AND MOTIVATION

Peer-to-peer (P2P) networks have been designed to support
data exchange among interconnected peer entities. In a P2P
network, any peer acts both as a data requestor and a data
provider. From a network perspective a peer accomplishes
routing functionalities by sending data to neighbors.

P2P networks have been extensively studied as substrates for
anonymous content distribution. One of the main goals is to
make it unfeasible to identify the sender or the requestor of any
block of data passing through the system. However, in these
systems anonymity is usually obtained at the expense of poor
performance: anonymous P2P networks are notoriously much
slower than non-anonymous ones [21]. In general, the pri-
vacy/performance tradeoff of anonymous P2P networks is still
an open research issue. It is worth noting that both anonymity
and P2P networks always rely on sufficiently many peers
cooperating in the network, but poor performance discourages
users from joining; thus, good privacy/performance tradeoffs
are of primary importance for these networks to be deployed
and gain user acceptance.

Recent studies (e.g. [12], [23], [5], [6]) have shown that
network coding as a routing technique is able to provide
advantages in terms of throughput, delay, and fault tolerance
in decentralized networks. The central idea of network coding

is that any node in the network can forward random linear
combinations of incoming packets instead of merely forward-
ing unmodified packets. This implies that individual blocks
of data shall be routed onto many network paths, although
in combination with data from other sources. One notable
consequence is that redundant paths in the network are always
exploited simultaneously rather than as alternatives. This leads
to a potential increase of performance and fault tolerance, since
there are more ways for a receiver to obtain a required data
block. Moreover, different receivers may be actually sharing a
common routing path where their requested data are travelling
as linear combination bundles.

We believe that network coding could also be exploited
to provide a degree of anonymity and deniability to user.
Since data blocks of a file almost always travel linearly
combined with other blocks from possibly different files, any
peer may enjoy a degree of deniability for any given file
whose data blocks are found to travel from/to it. Individual
blocks may possibly serve to “cancel” unwanted content from
other linear combinations, so downloading a block does not
necessarily imply the will to enjoy the content associated with
it. Network coding could in principle provide those guarantees
while at the same time enhancing file sharing performance,
thus encouraging people to join the system, with a consequent
improvement in system performance and guarantees.

A major concern in systems that use network coding is
posed by byzantine nodes that introduce corrupted data in
the network. This behavior, known as “pollution attack” [5],
allows an adversary to attack the system in a very effective
way, because errors introduced into a single block can prop-
agate and corrupt other data. This attack affects performance
of a generic network, because individual nodes will waste
bandwidth and time in downloading useless data. Thus, it is
important to augment network coding with efficient solutions
for checking the integrity of data blocks. This issue has been
investigated in decentralized networks where a kind of block
authentication can be assumed [16]. Basically, blocks are
signed with the private key of the producer and this allows
an easy form of integrity check. However this approach does
not easily apply to anonymous networks.

In this paper, we tackle the problem of integrity in P2P
networks based on network coding and providing anonymity



to users. We believe that distributed and collaborative integrity
checks could apply, provided they are specifically designed to
suit anonymity requirements.

Anonymity of data producers prevents anybody to associate
a block with the user who created it, so integrity checks based
on block signatures are not applicable. Indeed, as keys are not
to be associated with users, it becomes straightforward for a
malicious peer to alter a block and sign it with its own signing
key. Depending on the data encoding scheme, the corruption
might become apparent only when the file is completely
reconstructed, but by then several other possibly independent
blocks would have already been polluted [13]. Even if a
corrupted block is found by other peers, the malicious peer
can deny the possession of the signing key and claim that
the block was corrupted somewhere else. It is possible that
this problem could be solved by associating a reputation with
each public key; only keys with a reputation higher than a
chosen threshold would be accepted as valid signing keys. This
solution would have, however, several drawbacks. Signature
produced by a new user who is sharing one or more files
with other peers cannot be verified reliably until a certain
threshold for its reputation has been met. Another problem
of this approach is that reputation values for a specific public
key should be made available to all peers. Failing to do so
would imply that a key could have a high reputation for some
peers, and a low one for others. But a global knowledge would
require a P2P information exchange protocol (see e.g. [1]),
which is in turn susceptible to integrity attacks; alternatively,
a centralized database with the association of a key and its
reputation should be maintained, which may be impractical in
most circumstances.

Another way to protect packet integrity in P2P systems
based on network coding is to use homomorphic hash algo-
rithms. However, the integrity schemes based on homomorphic
hashes proposed so far do not take into account anonymity.
They indeed require a trusted channel between the peers and
a database which stores the hash values of each packets. In
the case of anonymous P2P, this channel must be anonymous
as well. Such a secure and anonymous channel, in turn, poses
new availability and integrity problems. Availability could be
enhanced by replicating the hash database, but this would
increase the hash integrity problem in case some of the replicas
are managed by malicious users.

II. MOTIVATION AND CONTRIBUTION

We propose a new solution for integrity checking on anony-
mous P2P networks based on network coding. More specifi-
cally, the main contributions of this paper are: (1) definition
of an identification scheme for data blocks; this identification
scheme allows to overcome one of the biggest drawbacks of
the solution proposed in [13], which is the need for a secure
storage for the hash values of the blocks in the network and a
secure authenticated channel for retrieving such hash values;
and (2) an efficient strategy for checking the integrity of pack-
ets, both for a decentralized anonymous storage network based
on network coding. We support our claims with performance

evaluation of a small prototype which implements the integrity
strategies described in this paper. Our idea is to abandon
signature-based techniques altogether and use a simpler hash-
based approach on the anonymous P2P network. Each new file
is divided into blocks of a predefined size. A hash is calculated
using a collision-resistant homomorphic hash function on each
block individually. Thanks to the collision-resistance property
of the hash function, different blocks have different hashes
with overwhelming probability. We exploit this property to
identify each block with its hash value. Peers willing to
download a file retrieve the list of the IDs which compose
such file. For each block they receive from their neighbors,
the integrity is verified on the fly by calculating the hash
value of the block and comparing it to the expected hash
value. Corrupted blocks are identified immediately and do
not pollute any other block. Instead of requiring a producer-
specific information (the producer’s public key), our proposal
uses a global parameter which allows all peers to verify blocks.

We then extend the hash-based scheme to deal with blocks
in batches, rather than one at a time, based on the assumption
that faulty blocks are expected to be infrequent. This improves
performance, but also requires efficient techniques for discov-
ering corrupted blocks, and identifying byzantine neighbors,
when presented with a faulty batch. Our scheme relies on the
existence of a honest1 super-peer that associates each shared
file with the list of its blocks. We believe that this assumption
is realistic, and certainly more realistic than assuming that each
peer can efficiently and reliably associate a trust level to the
public key of other peers. In our setup, peers only need to trust
one entity – the super-peer – instead of several independent
entities – the signers. Later in the paper we further discuss
about this assumption and show that it is indeed realistic.

Similarly to other P2P file sharing systems [18], this ap-
proach allows a malicious content provider to share fake or
corrupted files. Users will notice such attack only when a large
enough portion of the file has been downloaded. However this
well known problem is out of the scope of this paper, which
focuses primarily on the integrity of the blocks within the
overlay network.

The paper is organized as follows: Section III illustrates
the state-of-the-art on integrity checking in different P2P
networks. Section IV details the model of the anonymous
P2P network we used for our proposal, while Section VI
investigates our homomorphic hash algorithm, its extension
to batches of data blocks, and its performance. In Section VII
we discuss some strategies for isolating a corrupted block in
a batch. Section VIII concludes the paper.

III. RELATED WORK

Current anonymous or censorship-resistant P2P networks
do not perform user authentication, do not trust third parties
or central authorities, and try to unlink actions from users
who perform them. Typically, such systems gain anonymity

1The super-peer does not try to subvert the system by maliciously alter the
information that it is in charge of sharing. However it does not know any
private information about the peers, such as private keys or their identities.



by repeatedly routing a message from one node to another,
so as to gradually lose the sender-related information carried
by a message along its way. This approach poses at least two
challenges: queries and responses must be made unintelligible
to intermediate nodes, the loyalty of which cannot be relied
upon; at the same time, intermediate nodes should be made
capable of filtering out corrupted messages, in order to confine
a possible attack on data integrity. Thus, message integrity
check and corruption confinement are two primary needs for
these networks.

Some of the early anonymous P2P networks [8], [25], [22]
did not address the problem very deeply: they relied on bare
data replication to make integrity attacks more difficult (but
not impossible) and ultimately turning them into attacks to
performance. Other networks, however, implemented innova-
tive data encodings that allow integrity checks and corruption
confinement while coping with the distribution and anonymity
requirements. For lack of space we only account for what
is probably the most advanced one, namely, the encoding
of GNUnet. GNUnet [4] is a distributed storage that uses
an encoding called ECRS (Encoding for Censorship-Resistant
Sharing [14]), an improvement over the original encoding
of another famous anonymous distributed storage, namely,
Freenet [7]. With GNUnet, files are segmented into fixed-
size independent blocks, a feature that may greatly improve
download performance by allowing so-called file swarming,
that is, download of a file from more sources at a time. Each
block B of data is individually encrypted under the symmetric
key H(B), then the encrypted block E(B) is stored in the
distributed storage at the statistically unique address H(E(B))
(H is a cryptographic hash function). The information for
retrieving B is thus the pair 〈H(E(B)), H(B)〉, called a
Content Hash Key (CHK). The collection of CHKs denoting
all file segments is then arranged in a logical tree, using
indirection blocks similar to filesystem inodes which in the
end converge to a root CHK. With GNUnet, a requestor node
querying the CHK 〈Q,K〉 will send Q as a query; responses
are of the kind 〈Q,E(B)〉, that is, the ciphered block travels
back along with the query itself. Intermediate node cannot
decipher the response, since they are oblivious of K = H(B);
yet, they can perform the integrity check (hashing E(B) must
yield Q), so tampered data can be filtered out very early, and an
attack on data integrity essentially amounts to not forwarding
data at all. The GNUnet encoding could not be easily extended
to work with network coding; however it has indeed inspired
us in devising our own integrity scheme.

Other anonymous networks, like Tor [9] or MorphMix [20],
provide a multi-hop encrypted socket proxy service with no
abstraction of a storage. Censorship resistance is not a primary
goal with these systems, so pollution attacks are considered of
lesser importance compared to attacks to anonymity. Message
integrity in Tor is performed only at the two ends of each
proxy circuit, by labelling each block of data with (the first
four bytes of) the hash of the end-to-end session key (unknown
to all other nodes along the circuit) combined with the data
itself; intermediate nodes can thus pollute data and this will

only be detected at the receiver end of the circuit, with some
waste of resources along the circuit. MorphMix seems not to
address integrity issues at all.

General purpose integrity schemes fall into two broad
families, namely, those ones based on shared secret keys,
and those ones based on public/private key pairs. Message
Authentication Code (MAC) algorithms [15] fall into the
former family, whereas Digital Signature (DS) algorithms [19],
[10], [3] fall into the latter. None of them, however, is
compatible with network coding: since packets are modified
by intermediate nodes, neither MAC nor signature provide an
appropriate solution. For this reason, a number of integrity
mechanisms specifically designed for network coding have
been proposed so far. In [5], Boneh et al. propose two signature
schemes specifically designed to provide cryptographic protec-
tion against pollution attacks under realistic assumptions, i.e.
even when the adversary can corrupt an arbitrary number of
nodes in the network, eavesdrop on all network traffic, and
insert or modify an arbitrary number of packets. The schemes
in the paper ensure that the destination can filter out any
corrupted packets and hence recover the correct file. The signa-
ture scheme is publicly verifiable, therefore intermediate nodes
can discard corrupted packets as well (though whether this is
actually done will depend on the computational resources of
the intermediate nodes). The first scheme in the paper has
constant public key size and per-packet overhead. The two
schemes can be viewed as signing linear subspaces in the sense
that a signature a subspace authenticates exactly the vectors in
that subspace. In addition to the signature schemes, they also
prove a lower bound on the signature length for any scheme
for signing linear subspaces, showing that our constructions
are essentially optimal in this regard.

Krohn et al. present in [17] an integrity verification scheme
specifically designed for P2P networks that use rateless erasure
codes for efficient multicast transfers. Their scheme is based
on homomorphic hashing and closely mimics traditional P2P
integrity checks, where each downloaded block is verified indi-
vidually using cryptographic hashes or digital signatures. The
scheme introduced in that paper is independent of encoding
rate, therefore it is compatible with rateless erasure codes.

Gkantsidis and Rodriguez [13] propose a cooperative se-
curity scheme, based on the homomorphic hash function of
Krohn et al. [17], where well-behaved users cooperate to
protect themselves against malicious nodes by alerting affected
neighbors when a corrupted block is found. The result of this is
that even if each node checks for bad blocks infrequently, bad
blocks do not propagate in the network with high probability.
In this way the computation overhead for each node is greatly
reduced at the cost of relying on a complex algorithm for
cooperative verification. The applicability of their solution,
however, is severely limited by the need of a secure channel,
wich is used by peers to retrieve the hash values.

Yu et al. [26] extend the work of Gkantsidis and Rodriguez
by proposing a signature-based scheme that allows the source
to delegate its signing authority to forwarders. Forwarders can
generate new signatures without interacting with the original



source only if the newly encoded blocks are not corrupted.
This result is achieved using a homomorphic signature scheme.
Unfortunately Wang showed in [24] a vulnerability in the
scheme of Yu et al. More specifically, he showed that the
homomorphic property of the signature, together with the
batch verification used in their scheme, allows an adversary to
forge a signatures. Moreover, Gennaro et al. [11] note that
Yu et al. incorrectly assume that ((Ab mod p)d mod r) =
(A mod p)bd mod r for integers A, b, d, a, a prime p and an
independent RSA composite r, therefore the scheme works
only with negligible probability.

In the same paper [11], Gennaro et al. also propose their
own homomorphic signature scheme for network coding. Their
scheme is based on the RSA assumption, and they claim it is
the first scheme which avoids bilinear groups and pairings
for efficiency reasons. The bandwidth overhead is low for
networks of moderate size and the scheme uses a public
key of constant size. The paper also presents a homomorphic
hash scheme that works modulo a composite. This scheme
considers each information vector transmitted over the network
as a single large integer. The collision resistance of the hash
function is based on the factoring problem.

Our solution is based on the scheme presented in [17]. It
is possible that the homomorphic hash defined by Gennaro
et al. is also suitable for our purposes, although we haven’t
investigated on this yet.

IV. SYSTEM MODEL

The main features of our system model are as follows:

• Storage: each peer can store received packets in a tem-
porary buffer until it is ready to verify their integrity.

• Communications: peers can always reach one another
via the underlying network, which is supposed not to
introduce errors in the transmitted data. Network coding
is used for encoding and routing individual packets in
the network, as well as decoding packets once they have
passed the integrity checks.

• Secure channels: each peer can run basic cryptographic
primitives so that a possible eavesdropper cannot decode
ciphertext or inject fake packets or alter in-flight packets
in a communication channel between two peers. There-
fore the integrity of each packet is completely under the
responsibility of the sender.

The envisaged P2P system should provide some degree of
anonymity to both the producer and the consumer of in-
formation. Due to this requirement, the integrity verification
scheme should minimize any leakage of information about the
producer of a verified block. Ideally, it should be even made
impossible to determine whether two data blocks belonging
to different files were produced by the same user. As already
pointed out, this rules out signatures in general, and homo-
morphic signatures in particular (like, for instance, the scheme
proposed in [5]). Indeed, although a key in itself may not leak
information about its owners, signatures allows to determine

whether two files have been signed by the same user (or, at
least, by users who share a private key). Short-lived keys may
not present such a drawback, but are at the same time unable to
convey reputation information to the receiver, so they become
virtually useless. Instead, it is much easier for a super-peer to
build its reputation compared to a user’s signing keypair, since
we expect a super-peer to be a long-lived entity, well known
by all peers, what is clearly not the case for most user’s public
keys.

V. ADVERSARIAL MODEL

The envisaged adversary has the following features:

• Goal: the goal of the adversary is to corrupt the content of
some or all of the packets that flow through the network.
Packets must be corrupted is such a way that legitimate
peers cannot detect packet corruption until a significant
portion of the file has been retrieved.

• Compromise power: the adversary can compromise any
note at its will and fully control its behaviour. When
compromised, a node will reveal all its secret information.
The adversary can modify only the packets that flow
through compromised nodes.

• Parameter generation: the adversary cannot interfere
with the generation of the the global parameters for the
system.

• Defense awareness: the adversary is fully aware of any
scheme or algorithm that the peers use to defend the
integrity of the packets they exchange.

VI. HOMOMORPHIC HASH FOR NETWORK CODING

Homomorphic hash algorithms provide a valuable tool for
verifying packet integrity when network coding is used. When
a block is encoded, peers must attach the list of the IDs of the
blocks used to produce that encoding. To verify an encoded
block, a peer combines the list of IDs to obtain a single
packet ID and then verifies the output of the homomorphic
hash function on the aggregate block with the combined ID.
Blocks with the same content belonging to different files will
have the same hash and therefore appear as the same block
to the system. Depending on the concrete instantiation of the
network, this helps to increase either efficiency, because the
same block does not have to be stored more than once even
if it belongs to different files, or redundancy, since different
blocks belonging to different files are implicitly replicated. We
indicate the hash value for block b as IDb. A homomorphic
hash scheme suitable for our approach is defined by the
following algorithms:

Setup(1n). A probabilistic algorithm which, on input a se-
curity parameters 1n, outputs the public parameter pk. The
running time of the encryption, decryption, and the adversary
algorithms are all measured as a function of a security param-
eter, which is expressed in unary notation.



Hash(pk,b). A deterministic algorithm which on input a
public parameter pk and a block b, outputs a hash value ID.
Given pk and b it must be computationally infeasible to find
a block b′ 6= b such that Hash(pk, b) = Hash(pk,b′).

Combine(pk,b1, . . . ,bs, ID1, . . . , IDs′), s ≤ s′. An algorithm
which, on input a public parameter pk, a list of blocks
b1, . . . ,bs and a list of block IDs ID1, . . . , IDs, outputs a new
block b(s) which is the linear combination of ID1, . . . , IDs,
and its hash ID(s) derived from ID1, . . . , IDs.

Verify(pk,b, ID). An algorithm which, on input a public
parameter pk, a block b and a hash ID outputs 1 if
Hash(pk,b) = ID, 0 otherwise.

While blocks have a fixed size, files are allowed to be of
arbitrary size. Files are seen as an ordered sequence of blocks.

We use the global homomorphic hash algoritm proposed
by Krohn et al. [17] for calculating the blocks ID and for
integrity checks, since it produces relatively short hash output
and allows batch verification for improved performances. The
size of the hash values in this hashing scheme is independent
of the encoding rate, although in our scenario an encoded
block carries the list of all the identifiers of the blocks it
was composed with. Moreover, hash values can be verified
by the receiver on the fly. By allowing all the nodes to share
the global hash parameters (global hashing), there is a single
way to map a block b to Hash(b). Since we are using global
hashing, copies of the same content independently published
by different users look identical to the system.

A. The Hash Algorithm

In this section we briefly introduce the hash scheme of
Krohn et al. [17]. Informally, two random primes p and q and
a vector g are chosen by a trusted party and shared among
peers. The trusted party can be the developer of the network
coding library or one of the super-peers. The trust on this
party is, however, limited since a malicious trusted party can
generate collisions, which we assume can quickly be noticed.
A collision is also the proof that such a malicious party exists
and would lead to the re-generation of the public parameters.

Each file is divided into blocks, and each block is divided
into several sub-blocks of size |q| − 1. The ID of a block
has the same size of a sub-block. To combine two blocks,
a peer simply computes the sum of the corresponding sub-
blocks; let b1 = (b1,1, . . . , b1,`) and b2 = (b2,1, . . . , b2,`). The
combination of b1 and b2 is b(s) = (b1,1+b2,1, . . . , b1,`+b2,`).
The combination of the identifiers ID1 of b1 and ID2 if b2 is
ID(s) = ID1 · ID2. An encoded block is not corrupted if ID(s)

is equal to the hash calculated on the combined block b(s).
More formally, the three algorithms composing the homo-

morphic hash function are defined as:

Setup(1n, 1m). Picks two random primes p and q such that
|p| = n, |q| = m and q divides (p − 1). Then pick a vector
g = (g1, . . . , g`) composed of ` =

⌈
|bj |
m−1

⌉
random elements

from Zp, all of order q. Output pk = (p, q, g)

Hash(pk,b). Divide each block b into ` sub-blocks b1, . . . ,b`

of size |q| − 1, then output a hash value ID calculated as:

Hash(pk, b) =
∏̀
i=1

gbii (mod p)

Combine(pk, b1, . . . ,bs, ID1, . . . , IDs). Divides each block
bi into ` sub-blocks bi,1 . . . , bi,` and calculate the combined
block b(s) as follows:

j = 1 . . . ` :

b(s)
j =

s∑
i=1

bi,j (mod q)

and its hash ID(s) as

ID(s) =
∏̀
i=1

IDi (mod p)

Verify(pk,b, ID). Outputs 1 if Hash(pk,b) = ID, 0 otherwise.

Reasonable values for n and m are 1024 and 257 bits
respectively. Our tests were performed with those values. Note
that the knowledge of a tuple (i, j, xi, xj) such that gxi

i = g
xj

j

for some i 6= j suffices to efficiently compute arbitrary hash
collisions. Therefore, all nodes must trust the third party in
charge of generating the global parameters, which must be
chosen accordingly to [17].

For sake of brevity we do not provide a security proof for
the hash algorithm. The security proof can be found in [17].

Probabilistic Batch Verification The homomorphic hash
algorithm presented in [17] allows a node to verify many
blocks probabilistically and in batches in order to improve
efficiency. The idea of improving verification performances
by batching is not new and appeared for the first time in
[2]. Batch verification allows a peer to verify several block
at once in order to improve aggregate verification speed. If
the batch verifies successfully, then all blocks are correct with
high probability, otherwise one or more blocks are corrupted.
In order to perform a batch verification on a batch of size B,
a peer combines B blocks and their IDs using the Combine
algorithm. Then it computes the homomorphic hash on the
aggregate block and verifies whether it matches with the
expected value obtained with the Combine algorithm.

Unfortunately, as pointed out by Gkantsidis and Rodriguez
[13] and Yu et al. [26], an adversary can poison two or more
blocks in a way that, when verified together in a batch, the
resulting combined block is not affected by such modification.
As an example, an adversary can corrupt blocks b1 and b2 by
replacing them with b1 + ε and b2 − ε. If the two blocks
are verified separately, the verification would clearly fail, but
if the receiver applies batch verification it will not detect the
corruption. Both the cited papers provide a solution to this
problem by multiplying each block by a random coefficient.



With this modification the adversary can only succeed by
guessing the random coefficient correctly, which happens only
with negligible probability.

We implemented the homomorphic hash algorithm to mea-
sure its performance on our test platform, performing both
stand-alone verification and batch verification and compared
the results. We based our implementation on the OpenSSL
library (version 0.9.8g) under Linux. Our test were performed
on a Intel Core 2 Duo T9500 at 2.6GHz. Table I shows
the performances of our algorithm on the test machine. We
performed batch verification for a batch of 1000 blocks. The
size of each block is 16KB, and the size of batch window is
therefore slightly less than 16MB.

TABLE I
PERFORMANCE EVALUATION OF THE HASH ALGORITHM. THE BATCH SIZE

IS 1000 BLOCKS AND THE BLOCK SIZE IS 16KB.

Public parameter generation 1436 ms
Average time for calculating a hash 289 ms
Average speed for calculating a hash values 56 KB/s (∼ 450Kbps)
Average time for composing 1000 hash values 2.9 ms
Average time for composing 1000 blocks 141 ms
Average time for verifying a batch 433 ms
Average speed for verifying a batch 37 MB/s (∼ 300Mbps)

As our test confirmed, the cost of the composition of several
blocks and their hash values is very low compared to the cost
of calculating a single hash. Therefore the cost of verifying a
batch is marginally higher than the cost of verifying a single
block, and this holds even for rather large batches.

Batching clearly introduces a delay, since a newly received
block cannot be used until a specific amount of data has
been received and the whole batch verification is completed.
How this delay affects network coding based systems was first
studied by Gkantsidis and Rodriguez in [13]. They showed
that a large batch window severely affects the performances
of a content distribution network based on network coding,
since explicit content requests pay a high delayed, proportional
with the number of intermediate peers. This problem, of
course, is mitigated when data traffic is mainly unidirectional.
For instance, with content streaming or long downloads, the
batching latency can be hidden after an initial “buffering” time;
contents are then distributed in a pipeline fashion, and the
batching does not increase the download time significantly.

B. Security Analysis
Given the adversary’s compromise power and knowledge

of the scheme, the scheme and usage mode in this paper
effectively prevent an adversary from reaching its goal. By
compromising a node, the adversary does not obtain any new
secret information, since all nodes share the same information
regarding packet verification. Moreover, even if the adversary
subverts all but one nodes, the remaining legitimate peer will
still be able to tell wether a packet has been polluted by any
adversary-controlled node.

An adversary who has control over the generation of the
global parameters for the homomorphic hash function can

easily calculate collisions and therefore allow corrupt packets
to propagate through the network. In this case a collisions
implies that two or more blocks share the same block identi-
fier. However, the Parameter generation constraint in our
adversary model prevents this from happening. In practice
this means that these global parameters must be chosen by
a trusted third party. We point out that whenever the party
which generates the global parameters misbehaves, legitimate
peers can quickly notice thanks to the availability of hash
collisions in the network. The peers can react by discard the
global parameters and consider the third party as hostile. In
order to be able to communicate again, they will have to find
another trusted third party.

VII. BATCH VERIFICATION STRATEGIES

Batching is an optimistic approach in which verification
performance is greatly improved when none of the blocks
composing a batch is corrupted. Unfortunately if the verifica-
tion of a batch fails, peers are left with no information about
which block (or blocks) made the verification fail. Hence less
efficient strategies must be applied. A peer can discard the
whole batch without investigating further, but this approach
does not make an efficient use of the resources since the
bandwidth of the peer is limited and we expect some of the
blocks to be corrupted. Therefore, when a batch fails a peer
should try to keep as many non-corrupted blocks as possible to
maximize bandwidth efficiency. A trivial way to find the non-
corrupted blocks in a corrupted batch is to verify each block
separately. This is very inefficient and has a cost which grows
linearly with the number of blocks composing a batch. A more
efficient strategy when the number of corrupted blocks is low
is to perform a bisection search: the sub-batch is divided into
two parts. Each part is verified as a new batch and is accepted
if it is non-corrupted. The process is repeated on the part that
does not verify correctly, until all corrupted blocks are found.
When the number of corrupted blocks is small compared to
the size of the batch this approach is quite efficient: it has a
logarithmic complexity in the number of blocks composing a
batch.

We studied how to provide a more efficient strategy for
batch verification when a small number of blocks in a batch
is corrupted. As stated in the Network Model (cf. section IV),
we assume that the underlying communication layers provide
reliable communication. Each peer is assumed to verify each
block that is forwarded to other peers; therefore if a block
is corrupted, it is so because of a malicious action, and the
neighbor that forwarded it is the culprit of such corruption.

We assume that, since byzantine nodes can be detected
as soon as they forward a corrupted packet, there will be a
small number of them. If a batch does not verify correctly,
we optimistically assume that only a subset of the neighbors
are byzantine. To improve efficiency we propose the following
bisection technique: when a batch fails, it gets divided it in
sub-batches; each sub-batch is composed of all the blocks
coming from one neighbor. Sub-batches which verify correctly
can be accepted immediately; sub-batches which fail the



verification can either be discarded completely or be verified
with the bisection approach. However, discarding all blocks
from a specific source may provide a good tradeoff between
bandwidth efficiency and computational overhead. Once a
node is discovered to be malicious, it can be removed from the
neighbor list. This form of naive partitioning has a complexity
which grows linearly with the number of neighbors.

A more efficient approach is to use the bisection technique
at a sub-batch level instead of block level. We calculated the
ratio between the expected number of verifications performed
in the case of bisection and in the case of naive partitioning,
varying the number of neighbors. The result is shown in
Figure 1. When a node has a small number of neighbors,
there is no much difference between the two approaches. The
difference becomes more evident and justifies the adoption
of this approach when the number of neighbors grow: when a
node has eight neighbors, the expected number of verifications
with neighbor-level bisection is 3/4 of the expected number of
verification with naive partitioning. When the neighbors are
sixteen or more, the bisection approach requires less than half
verification compared to naive partitioning on average.

We have considered another batch verification approach
which relies on statistics on the previous behavior of neigh-
bors, called ranked partitioning. With this approach a node
keeps track of how many blocks it received from each neigh-
bor. In case a batch verification fails, the node divides the
batches in sub-batches according to the source of the blocks,
and orders them by the ranking of the source. Then it verifies
the sub-batches sequentially, starting from the one with the
lowest ranking. We argue that a neighbor with a high ranking
is less likely to forward corrupted blocks than a neighbor
with a low ranking. A denial of service attack against a
peer executed by exploiting the batch verification algorithm
has a higher effectiveness if it is performed by the neighbor
with the highest ranking. However, in order to be among
the neighbors with highest ranking, an adversary must first
provide a large contribution in terms of non-corrupted blocks,
therefore making the attack less effective (the user has to pay
a higher computational cost to find the byzantine neighbor,
but received a large number of non-corrupted blocks from
that very neighbor) and particularly expensive to implement.
Figure 2 shows the performances of this approach compared
to the bisection methods. The graph represents the ratio of the
expected values of the ranking partitioning and the bisection
approach varying the number of neighbors. When a node has
a very small number of neighbors, the ranked partitioning
approach is less efficient than the bisection approach. Increas-
ing the number of neighbors, the advantage of this batching
method over bisection becomes more evident. A peer with
sixteen nodes performs, on average, about half verification
operations using the ranked partitioning approach compared
to the bisection approach.

VIII. CONCLUSIONS

The adoption of network coding in anonymous P2P systems
for content distribution requires suitable schemes for integrity
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Fig. 1. Bisection vs. naive partitioning. The graph shows the ratio of the
expected number of verification with bisection and naive partitioning.
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Fig. 2. Ranked partitioning vs. bisection. The graph shows the ratio of the
expected number of verification with bisection and ranked partitioning.

check aimed at mitigating pollution attacks while preserving
the anonymity level. We have provided two novel contributions
in this respect: (1) a modification of an existing integrity
scheme [17], in the form of a different identification scheme
for data blocks that requires neither a secure storage for hash
values, nor a secure authenticated channel for retrieving such
hash values; and (2) two strategies for checking the integrity of
packets in batches, based on two different criteria for neighbor
partitioning (bisection and ranked).

A small prototype which implements the integrity strategies
described in this paper could show that the two batch verifi-
cation strategies significantly boost the efficiency of integrity
check under the realistic assumption that only a small fraction
of neighbors are compromised. Performance measurements
carried out on the prototype show that this solution is feasible
for peers characterized by limited computing power.
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