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Abstract. Popular consumer review sites, such as Yelp and Tripadvisor, are based
upon massive amounts of voluntarily contributed content. Sharing of data among
different review sites can offer certain benefits, such as more customized service and
better-targeted advertisements. However, business, legal and ethical issues prevent
review site providers from sharing data in bulk.
This paper investigates how two parties can privately compare their review datasets.
In presents a technique for two parties to determine which (or how many) users have
contributed to both review sites. This is achieved based only upon review content,
rather than personally identifying information (PII). The proposed technique relies
on extracting certain key features from textual reviews, while the privacy-preserving
user matching protocol is built using additively homomorphic encryption and garbled
circuit evaluation. Experimental evaluation shows that the proposed technique offers
highly accurate results with reasonable performance.

1 Introduction

On-line social networks (OSNs) are a valuable resource for untold masses who rely on
them in both personal or professional aspects of everyday life, including: sharing personal
content [2,4], broadcasting pithy “news” messages to others with similar interests [7], finding
jobs or identifying job candidates [5], planning travel [6], and assessing businesses (stores,
restaurants, services) [8] or products [1]. A typical OSN provides the framework wherein
volunteers contribute virtually all available content. Within this framework, users generally
reveal – often unwittingly – tremendous amounts of personal information, including habits
and tastes. This information is very valuable for quickly detecting trends and serving timely
targeted advertisements [3].

Community-based review sites form a specific class of OSNs. Well-known examples are
yelp.com, tripadvisor.com and amazon.com. On these sites, users read and contribute
reviews expressing their opinions on different products, services and businesses. Users can
also discover other groups or individuals with similar interests. In recent years, such sites
have become very popular. For example, yelp.com received 78 million unique monthly
visitors, on average, in the second quarter of 2012 [9]. Also, in 2012, yelp.com users have
contributed more than 30 million reviews [9].

The most valuable asset of community-based review sites is user-generated content. It is
perceived to be unbiased and represents the main reason for attracting multitudes of people
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to sites like yelp.com or tripadvisor.com. While review sites are happy to let anyone
– including casual users without accounts – read individual reviews, they zealously guard
bulk user content. To this end, they usually employ both technical and legal (e.g., terms of
service [10]) measures to prevent bulk access and large-scale content harvesting.

We believe that sharing user-related information across sites could be beneficial to review
sites themselves as well as their users. Various sites have access to information concerning
different aspects of public and private lives of their users. Knowing which users belong
to multiple sites would allow the latter to provide better service or better-targeted ads,
e.g., a travel site could highlight gastronomic destinations for users who contributed to a
restaurant review site, or a product-oriented site might advertise ski gear for users who
reviewed mountain resorts on a travel site.

This paper makes the following contributions:

1. We construct a technique that identifies common users across two review sites by com-
paring user-generated content, rather than user names or IDs. (In general, IDs are prob-
lematic because users tend not to use consistent identifiers across sites. Furthermore,
imposing, incentivizing or enforcing consistent identification/naming is very difficult.)

2. We show how to efficiently implement the proposed technique with privacy, such that
one of the two sites learns only which (or how many) users belong to both, while the
other learns nothing. Furthermore, this is achieved with a high degree of accuracy.

Previous literature [12,43] shows that sets of anonymous reviews can be linked by merely
relying on simple textual features. However, these prior techniques require at least one of the
parties to reveal all of its reviews or their compact representation. Our work explores new
and more sophisticated textual features, and provides the first privacy-preserving approach
for efficiently computing user similarity.

Our work also helps mitigate so-called review spam [35], which involves creating fake
reviews, with the intent to over-promote or defame a product or a service. Fake reviews
appear as if generated by legitimate users and are therefore hard to identify. We antici-
pate that detection of suspected spammers’ accounts would be a useful service. One way
to implement this service is as follows: one site with the expertise in detecting spammer
accounts accumulates a set of confirmed spammers along with their content. It then runs
our protocols with any other site that has a set of its own suspected spammers. As a result,
the latter obtains a list of confirmed spammers.
Organization: Related work is summarized in Section 2. Our review matching algorithm
(without privacy) is introduced in Section 3. Next, cryptographic preliminaries are discussed
in Section 4, followed by our privacy-preserving matching protocols in Sections 5 and 6.
Then, protocol performance is assessed in Section 7 and Section 8 concludes the paper.
Security analysis can be found in Appendix A.

2 Related work

Most related work falls into two categories: (1) authorship identification and (2) privacy-
preserving protocols. The former offers a number of results showing that authorship linkage
based on textual (stylometric) features is feasible and sometimes very effective. The latter
yields numerous cryptographic techniques for privately computing certain set operations
and similarity measures.
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2.1 Authorship Identification and Linkage

Most prior work on this topic deals with free-style text, such as news reports, scripts,
novels, essays and diaries. This is motivated by the recent increase in scholastic, academic
and regular literary plagiarism.

A number of techniques have been explored to identify common authorship. For example,
Narayanan et al. [43] conducted a large-scale author identification study of anonymous
blogs using stylometric features. A number of features were extracted and used in training
classifiers that recognized authors based on their writing style. A set of 100, 000 blog authors
was used to evaluate proposed techniques. Accuracy of up to 80% was obtained.

A more recent result [12] shows how to link reviews authored by the same person. One
de-anonymization technique was based on constructing a Näıve Bayesian (NB) model [39] for
every user and then mapping each set of anonymous reviews to the corresponding user with
the highest probability. The second technique was based on the symmetric Kullback-Leibler
(KL) divergence distance function [14]. With KL, the user whose reviews have the shortest
distance to anonymous reviews is labeled as the original author. This demonstrates that
anonymous review sets (at least, for prolific reviewers) by same author can be linked with
very high probability. Moreover, distribution of digram (two-letter) tokens is very effective
in determining similarity among review sets.

There have been other interesting authorship analysis studies. Notably, [32] proposed
a technique that extracts frequent pattern write-prints that distinguish an author. Accu-
racy reached 88% using a single anonymous message. The study in [11] explored author
identification and similarity detection by using stylistic features, based on Karhunen-Loeve
transform to obtain write-prints. Accuracy reached 91% in identifying the author of anony-
mous text from a set of 100 authors. Results indicate the feasibility of linking bodies of
text authored by the same person. A comprehensive survey of authorship identification and
attribution studies can be found in [48].

2.2 Privacy-Preserving Protocols

There is extensive literature on secure multi-party computation. Starting from the semi-
nal work on garbled circuit evaluation [51,28], it has been shown that any function can
be securely evaluated by representing it as a boolean circuit. Similar results exist for se-
cure evaluation of any function using secret sharing techniques, e.g., [46], or homomorphic
encryption, e.g., [20].

Recent results on garbled circuits provide optimizations that reduce computation and
communication overheads associated with circuit construction and evaluation. Kolesnikov
and Schneider [38] described an optimization that permits XOR gates to be evaluated for
free, i.e., without communication normally associated with such gates and without involving
any cryptographic functions. This optimization is possible when the hash function used for
creating garbled gates is correlation-robust under the definition in [19]. Under similar as-
sumptions, Pinkas et al. [45] provided a mechanism for reducing communication complexity
of binary gates by 25%: each gate can be specified by encoding only three outcomes of the
gate instead of four. Finally, [37] improved complexity of certain common operations, such
as addition, multiplication, and comparison, by reducing the number of non-XOR gates.

In recent years, a number of tools have been developed for automatically creating a
secure protocol from its function description written in a high-level language. Examples
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include Fairplay [41], VIFF [24] and TASTY [31]. However, “custom” optimized protocols
for specific applications are often much more efficient than such general techniques.

There are also a number of results in privacy-preserving set operations, e.g., private
set intersection (PSI) [27,36,29,30,34,25] and cardinality-only PSI (PSI-CA) [21]. The work
in [34] introduced a PSI protocol based on oblivious pseudorandom functions (OPRFs)
secure in the malicious model. This protocol incurs linear complexity in size of combined
client/server inputs and it is secure under the One-More Gap Diffie-Hellman assumption.
In [21], a very efficient, also OPRF-based, PSI-CA protocol is constructed offering linear
complexity in the size of server and client inputs. Its security, in the semi-honest model, is
based on the DDH assumption.

As mentioned in Section 1, although PSI and PSI-CA offer functionalities similar to
those required to determine common authors across multiple review sites, noisy nature of
features extracted from reviews prevents the use of such tools. Whereas, privacy-preserving
protocols in [16] are more relevant to our context of review matching. In particular, [16]
shows how to efficiently and privately approximate the computation of Jaccard index [49]
using minhash techniques [17]. This approach is effective to compare text in order to detect
plagiarism or enforce copyright.

3 Review Matching

Contributors to a review site are referred to, and are known by, their user-names, unique per
site. As mentioned in Section 1, relying solely on user-names to determine common users
across sites is problematic, since identical user-names on different sites may not correspond
to the same user. Conversely, the same person may select distinct user-names on different
sites. Similarly, relying on the user’s real identity for matching may not be viable, since
users may not be willing to disclose any personal information.

Let C (client) and S (server) denote two mutually suspicious review sites. Each site has
access to a collection of reviews, partitioned by user. Let UC = {C1, C2, . . . , Cv} denote
the set of users that of C, and US = {S1, S2, . . . , Sw} – the set of users of S. RCi and
RSi refer to the set of reviews authored by Ci and Si, respectively. C ′s goal is to learn
privately (i.e., without disclosing the content of reviews associated with its users) one of the
following: Common Users, denoted as Ψ = UC ∩ US , or Number of Common Users
(|Ψ |). Notation is summarized in Table 1.

v Number of users at C Ψ̂ Common users computed by the matching algorithm

w Number of users at S er Error rate

UC Users of C rr Recall rate

US Users of S ε Matching threshold

Ψ Common users (UC ∩ US) mr matching user approximation error

Xi Feature vector computed from Ci’s reviews Yj feature vector computed from Sj ’ reviews

Ci user at C Sj user at S

RCi set of reviews authored by Ci RSj set of reviews authored by Sj

Table 1: Notation

In this section, we construct a technique for computing Ψ and |Ψ | without privacy. We
then add privacy features in Sections 5 and 6.
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3.1 Matching Process Overview

To find common users, we need to determine similarity between two sets of reviews. We
consider Ci and Sj as corresponding to the same user if their corresponding review sets
are very similar. One way to assess similarity is to use a distance function. This works as
follows: from each user review set, extract a number of features and represent them as a
vector. Let X = feat(·) be a feature extraction function that takes as input a set of reviews
and returns the associated feature vector X. Let d = D(·, ·) be a distance function that
takes as input two feature vectors and outputs a value d ≥ 0. Informally, 0 indicates that
two inputs are identical, and the larger the d, the more different they are. We say that two
feature vectors X,Y (and their corresponding review sets) are similar if D(X,Y ) ≤ ε, for
some value ε.

Each protocol party computes a feature vector per user resulting in a set of feature
vectors X = {X1, . . . , Xv} for C and Y = {Y1, . . . , Yw} for S, where Xi = feat(RCi), and
Yi = feat(RSi). Let Xi and Yj be the feature vectors corresponding to reviews of users Ci
and Sj , respectively. We approximate Common Users and Number of Common Users as:

Matching Users, defined as Ψ̂ = {Ci ∈ UC | ∃Sj ∈ US s.t. D(Xi, Yj) ≤ ε} and Number

of Matching Users, defined as |Ψ̂ |. Clearly, approximation accuracy depends on specific
properties of the features being considered and on the distance function D.

There are several distance functions that have been shown to provide good results on
textual documents retrieval, including Cosine, Jaccard, and Euclidean distances [13]. We
rely on Euclidean distance. Our experiments (see Section 3.3) confirm that it is a sensible
choice for review similarity. Euclidean distance between vectors X = {x1, . . . , x`} and Y =
{y1, . . . , y`} is defined as:

D′(X,Y ) =

√√√√∑̀
i=1

(xi − yi)2

For technical reasons, in the rest of the paper, we consider D to be squared euclidean
distance, i.e., D(X,Y ) = (D′(X,Y ))2. We acknowledge that other distance functions may
offer different, and possibly better, accuracy results. We leave evaluation of other distance
functions to future work.

3.2 Dataset: Training and Testing Settings

To assess accuracy of our review matching technique, we rely on approximately 1 million
reviews from 1, 997 users of yelp.com. 1 We define two metrics that capture two performance
aspects of review matching process:
1. Recall Ratio (rr) – measures Ψ̂ ’s coverage of Ψ : rr = |Ψ̂ ∩ Ψ |/|Ψ |.
2. Error Ratio (er) – measures how often an element not in Ψ is included in Ψ̂ :

er =
|{(Ci, Sj) s.t. Ci 6= Sj and D(Xi, Yj) ≤ ε}|

|{(Ci, Sj) s.t. Ci 6= Sj}|

We divide users (along with their reviews) into two distinct sets of nearly the same size: Tr
and Te, used for training and testing purposes, respectively. We use Tr to determine a set

1 Experiments were performed on the same dataset used in [12]
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of features and a threshold ε that maximize rr while keeping er low. We then check how
these parameters perform over Te. We emphasize that no data from Te is used to select
any parameters.

For every user in Tr, we randomly split its reviews into two parts. Let TrC and TrS
represent first and second half of each user’s reviews. Based on TrC and TrS , we build two
sets of feature vectors PTrC and PTrS . We then select ε as follows: First, we compute the
distance between all pairs of feature vectors from PTrC and PTrS . Then, we vary rr from
(0%-100%] by selecting different values for ε. For each ε, we measure corresponding er.
Finally, we select ε that yields the best trade-off between rr and er.2

3.3 Feature Sets

Proper selection of features is crucial for achieving high accuracy. We now assess different
feature sets and determine the combination that offers the best performance.

Write-Prints and Basic-9 Features. We first examine two standard feature sets: Basic-9
[18] and Write-Print [11]. The former consists of 9 features that measure different textual
characteristics, e.g., number of unique words used in a review set and its ratio to the total
number of words. These features have been shown to be effective in identifying authors
of anonymous texts [18]. Write-Print is a set of static and dynamic features that fall into
five groups: lexical, syntactic, structural, content and idiosyncratic. It is highly effective in
identifying authors, as shown in [11]. We use the implementation of both feature sets from
JStylo ([42]), a stylometric java-based library.3

Figure 1 shows rr and er values on Tr for various ε values, as described in Section 3.2,
using either Basic-9 or Write-Print. Results in Figure 1 show that, regardless of ε, features
we consider do not allow us to achieve high rr and low er. Thus, we explore different feature
sets.

Character n-gram. n-grams (n consecutive characters in a text fragment) are a well-
known feature that have been extensively used in textual analysis. We experiment with
n-gram feature sets for n = 2 (digrams) and n = 3 (trigrams). As shown in [12], digrams
are very effective in identifying review authors. N-gram feature vectors for sets of reviews
are constructed as follows: each array element labeled with a given n-gram is represents
frequency of occurrence of this n-gram in a user’s review set.

Figure 2 shows rr and er results using digrams and trigrams. Digrams show better
performance compared to Write-Prints and Basic-9 features. For example, for rr = 95%,
er = 5.11 · 10−5 with digrams and 2.01 · 10−4 with trigrams.

Part-Of-Speech (POS) Tagging. Part-Of-Speech (POS) tagging involves mapping words
to parts of speech, e.g., noun or verb. The idea is that different individuals write using
distinct grammatical structures and choose different words. We rely on digram and trigram

2 Ideally, evaluation of our technique would be performed on two or more datasets from different
sites, which share a correctly identified subset of users. However, we are not aware of the existence
of such a dataset. Therefore, we rely on partitioning reviews from each user into two sets.

3 JStylo implements a partial set of Write-Print features that amounts to 22 feature categories.
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Fig. 1: Error and recall ratio of Write-Print and Basic-9
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Fig. 2: Error and recall ratio of character digram and trigram

versions of POS tags (2 or 3 consecutive parts of speech tags) and use Stanford POS Maxent
Tagger [50] to label each word with one of 45 possible POS tags. We assign weights to POS
features similarly to character n-grams.

Figure 3 shows performance results of POS features. Clearly, digrams outperform tri-
grams: for example, with rr = 95%, the corresponding er = 7.01 ·10−6 digrams and 6 · 10−3

with trigrams.

Combining Character and POS n-grams. Since character and POS digram feature
sets offer good performance, we explore ways to combine them to further improve matching
accuracy. In particular, we use a simple weighted average technique, i.e.:

Dcombined(X,Y ) = (a)×Dcharacter digram(X,Y ) + (1− a)×DPOS digram(X,Y )

We vary a from 0 to 1 (in 0.1 increments) to determine impact on rr and er.

With our training dataset, values of a between 0.7 and 0.8 lead to er < 10−5. There
are two reasons for limiting er this way: (1) er ≈ 10−5 is relatively high and could lead to
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Fig. 4: error and recall ratio of combining character and POS digrams

poor approximation of Ψ when v, w are very large4, and (2) for our dataset, there is no a
value that gives better performance over the full range of rr.

Figure 4 summarizes the experiments. Combining character and POS digram features
yields increased matching accuracy. Since a = 0.7 and a = 0.8 provide roughly the same
performance, we pick a = 0.7. We choose ε that yeilds rr = 95.3% and er = 0% in Tr. We
test selected ε on Te and the results are virtually identical (rr = 95.5% and er = 0%). Note
that, when selecting the threshold, we choose ε such that it maximizes rr, while keeping
er = 0% to reduce inaccuracy of approximating Ψ incurred by larger er values.

When combining character and POS digrams, the resulting feature set size contains
2, 701 features: the former contribute 676 (262) and the latter – 2025 (452) features. Even
both digram types are a subset of Write-Print features, they perform significantly better
than the entire Write-Print feature set; see Figure 1.

4 Note that the number of errors grows proportionally to v · w.
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3.4 Approximation Error

Though er and rr represent good metrics for determining accuracy of matching algorithms,
they do not offer easy-to-interpret information for the number of matching users algorithm.
We therefore define matching user approximation error (mr) as:

mr =
abs(|Ψ̂ | − |Ψ |)

|Ψ |

Since our choice for ε leads to er = 0%, mr mainly depends on rr. Given our accuracy
results, |Ψ̂ | = rr · |Ψ |. Thus, mr = 1 − rr, i.e., mr < 5%. This shows that our review

matching technique closely approximates Ψ with Ψ̂ .

4 Cryptographic Preliminaries

Security model. We use the standard model for secure two-party computation in the
presence of semi-honest (also known as honest-but-curious) participants. In this model,
participants follow prescribed protocol behavior, while trying to learn or infer additional
information beyond that obtained during normal protocol execution. A protocol is consid-
ered secure in the semi-honest model if the view of protocol execution for each party is
computationally indistinguishable from the view simulated using that party’s input and
output only. This means that protocol execution does not reveal any additional information
to participants. A more formal definition is as follows:

Definition 1. Suppose participants P1 and P2 run a protocol π that computes function
f(in1, in2) = (out1, out2), where ini and outi denote Pi’s input and output, respectively. Let
VIEWπ(Pi) denote Pi’s view during the execution of π. It is formed by Pi’s input, internal
random coin tosses ri, and messages m1, . . .,mt passed between parties during execution:

VIEWπ(Pi) = (ini, ri,m1, . . .,mt).

We say that π is secure in the semi-honest model, if for each Pi, there exists a probabilistic
polynomial time simulator Si such that

{Si(ini, fi(in1, in2))} ≡ {VIEWπ(Pi), outi},

where “ ≡” denotes computational indistinguishability.

Homomorphic encryption. Our protocols require existence of a semantically secure ad-
ditively homomorphic encryption scheme. In such a scheme, Enc(m1) ·Enc(m2) = Enc(m1 +
m2), and, therefore, Enc(m)a = Enc(a ·m). While any such scheme (e.g., Paillier [44]) would
suffice, the construction by Damg̊ard et al. [23,22] (DGK) is of particular interest here.

DGK was designed to work with small plaintext spaces and has shorter ciphertext size
than other similar schemes. A DGK public key consists of: (i) a small (possibly prime)
integer u that defines plaintext space, (ii) a k-bit RSA modulus N = pq where p and q are
k/2-bit primes, such that, if vp and vq are t-bit primes, and uvp|(p−1) and uvq|(q−1), and
(iii) elements g, h ∈ Z∗N such that g has order uvpvq and h has order vpvq. Given a message
m ∈ Zu, encryption is performed as: Enc(m) = gmhr mod N , where r←{0, 1}2.5t.
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Homomorphic-based comparison. Our protocols rely on privacy-preserving comparison
to determine whether the distance between two feature vectors is below a threshold. Such
a distance (d) is computed in the encrypted domain by the server, and compared (also in
its encrypted form) with threshold ε.

We base our comparison protocol on that of Erkin et al. [26]. It relies on the observation
that d < ε is true iff the l-th bit of a = 2l+d−ε is 1 (for 2l >> d and l >> ε). Given Enc(d),
encryption of a is computed by S as Enc(a) = Enc(2l) ·Enc(d) ·Enc(ε)−1. Encryption of the
l-th bit of a is then: Enc(al) = Enc(2−l · (a − (a mod 2l)). Value a is available to S only
in encrypted form, and computing a mod 2l in the encrypted domain requires interaction
between C and S:

S “masks” Enc(a) by selecting a random r and computing Enc(â) = Enc(a) ·Enc(r).
Then, S sends Enc(â) to C, who decrypts it and returns the encryption of c = â mod
2l to S. Next, S “unmasks” Enc(c) by computing Enc(c) ·Enc(r)−1 = Enc(a mod 2l).

5 Privacy-Preserving Computation of Matching List

We now present a protocol for Privacy-Preserving Computation of Matching List (PPCML).
It involves two participants: C and S. At the end, C learns the set of users in its input that
match those in S’s input, while S learns nothing. For simplicity’s sake, we represent C’s
input as a single feature vector, corresponding to one user, while S’s input is a set of w
feature vectors, from w users. This protocol can be trivially extended to the case where
both parties input a set of feature vectors.

Weighted Average. As discussed in Section 3.3, we use a weighted average distance
function Dcombined with a = 0.7. Dcombined can be also computed as a square Euclidean
distance function between a feature vector for user in C and a user in S. This is done by
updating the weights of the feature vector by multiplying all digram feature weights by

√
a,

and all POS digram feature weights by
√

1− a.

Scaling. Since our protocol can only process integer vectors, we first need to scale values
in feature vectors from the domain [0, 1] ⊂ R to [0, 10h] ⊂ N by multiplying all features by
10h for some h. Intuitively, larger h allow for better precision. However, the number of bits
required to represent values in [0, 10h] – and therefore the cost of our protocol – increases
with h. Our experiments showed that h = 4 provides a reasonable tradeoff between cost
and accuracy. With this scaling, we obtain a scaled ε value that gives exactly the same rr
and er as the non-scaled version in both Tr and Te. Moreover, we determined that using
h > 4 does not improve precision and recall significantly.

Protocol Input:
C: feature vector X = (x1, . . . , x`) and key-pair (pk, sk).
S: Y = {Y1, . . . , Yw} where Ym = (ym,1, . . . , ym,`), for 0 < m ≤ w is a feature vector.

Protocol Output:
C: 1, if Euclidean distance between X and any vector in Y is below ε,5 and 0 otherwise.
S: nothing.

5 The protocol implements D(X,Y )
?
< ε instead of D(X,Y )

?

≤ ε as defined in Section 3.1. In our

setting, (D(X,Y )
?

≤ ε) = (D(X,Y )
?
< ε′) for ε′ = ε+ 1.
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Protocol Steps:
1. For i = 1, . . . , `, C computes {〈Enc(xi),Enc(x2i )〉} and sends results to S.
2. For m = 1, . . . , w and j = 1, . . . , `, S computes {Enc(y2m,j)}.
3. For m = 1, . . . , w, S computes encrypted square Euclidean distance between X and Ym

as:

Enc(dm) = Enc

(∑̀
i=1

(xi − ym,i)2
)

=
∏̀
i=1

(
Enc(x2i )Enc(y

2
m,i)Enc(xi)

(−2ym,i)
)

4. For each m = 1, . . . , w, S and C invoke an instance of the privacy-preserving comparison
protocol [26] to determine whether dm<ε

2, i.e., S learns Enc(δm), where δm = 1 iff
dm < ε2.

5. S computes Enc(α) =
∏w
m=1 Enc(δm). Note that α represents the number of vectors in

Y for which square Euclidean distance from X is less than ε2.
6. S returns u = Enc(α)r = Enc(α ·r), where r is a random element chosen uniformly from

the message space (except 0).
7. C computes z = Dec(u) = α · r. If z 6= 0, C outputs 1; otherwise it outputs 0.

Although there are techniques for computing square roots using secure multi-party com-
putation, e.g., [40], their performance is quite below par for our application. Fortunately,
comparison of Euclidean distance with ε can be performed without computing any square
roots, by comparing ε with the square of Euclidean distance (see Step 4).

In practice, C’s input would contain multiple feature vectors. C can simply run the
protocol multiple times – once per input vector. Security of the protocol would be unaffected,
except that S would learn the upper bound on the number of vectors in C’s input.

In the rest of paper, we use the term PPCML to refer to the combination of (possibly)
multiple instance of the protocol above, one per feature vector of C. Security analysis of
the protocol sketched out above is provided in Appendix A.

6 Privacy-Preserving Computation of Matching List Size

We now extend PPCML by restricting C ′s knowledge to the number of users that occur
in bothC and S, i.e., we obtain Privacy-Preserving Computation of Matching List Size
(S-PPCML). In this protocol, each party’s input is a set of feature vectors. C learns the
matching list (set intersection) size while S only learns the upper bound on the number of
C’s users.

Protocol Input:
C: set of feature vectors X = {X1, . . . , Xv}, with Xn = (xn,1, . . . , xn,`) and key pair

(pk, sk).
S: set Y = {Y1, . . . , Yw} where Ym = (ym,1, . . . , ym,`) is a feature vector.

Protocol Output:
C: number of feature vectors Xn ∈ X with Euclidean distance less than ε for at least one

vector from Y; i.e., |Ψ̂ |.
S: nothing.
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Protocol Steps:
1. For each n = 1, . . ., v and i = 1, . . . , `, C computes {〈Enc(xn,i),Enc(x2n,i)〉} and sends

them to S.
2. For each m = 1, . . . , w and j = 1, . . . , `, S computes {Enc(y2m,j)}.
3. For each n = 1, . . . , v and m = 1, . . . , w, S computes encrypted square Euclidean

distance between Xn and Ym as

Enc(dn,m) = Enc

(∑̀
i=1

(xn,i − ym,i)2
)

=
∏̀
i=1

(
Enc(x2n,i)Enc(y

2
m,i)Enc(xn,i)

(−2ym,i)
)

4. For each n = 1, . . . , v andm = 1, . . . , w, S and C interact in a privacy-preserving manner
to compare Enc(dn,m) against ε2; S learns Enc(δn,m), where δn,m = 1 iff dn,m < ε2.

5. For each n = 1, . . . , v, S computes Enc(αn) =
∏w
m=1 Enc(δnm). Note that αn represents

the number of vectors in Y that fall within ε of Xn.
6. For each n = 1, . . . , v, S and C interact in a privacy-preserving manner to compare

Enc(αn) to 0. Let β be the outcome of this comparison – i.e., (βn = 1) iff (αn > 0); S
learns Enc(βn).

7. S computes Enc(γ) =
∏v
n=1 Enc(βn) and sends it to C.

8. C decrypts and outputs γ, which corresponds to the number of users it shares with S.

6.1 Protocol Optimizations: AS-PPCML

We now discuss some optimizations.

Dataset-Dependent Optimizations The goal of Step 6 in the S-PPCML protocol is to
“combine” multiple matches between a single feature vector from C and multiple vectors
from S into one. According to our experiments, the value of ε selected in Section 3.3 allows us
to keep error rate at 0 (with our dataset) and matching rate at 95% without performing Step
6. Therefore, removing this step has virtually no impact on the result of the computation.
We refer to this modified version of the protocol as Approximate S-PPCML (AS-PPCML).

Garbled Circuits As shown in [15,47], comparison protocols can be implemented more
efficiently using garbled circuits, rather than homomorphic encryption. Therefore, we can
easily optimize the S-PPCML protocol by replacing homomorphic-based comparison with
one using a garbled circuit.

For each Xn and Ym from C ′s and S′s inputs, respectively, S computes encrypted
Euclidean distance between the two as in our S-PPCML protocol. Then S “obfuscates” the
result by multiplying it with a random value rn,m. The obfuscated value is returned to C,
which inputs it into the comparison circuit. S inputs ε and rn,m. The circuit adds −rn,m
to C’s input in order to “unmask” it, and compares the result with ε. C only learns the
outcome of the comparison, while S learns nothing.

We implemented this comparison circuit based on the design of efficient circuits for
addition modulo 2N and comparison described in [37].

Other Optimizations We perform as much computation as possible in the unencrypted
domain. In particular, both S and C compute, in the clear, summation of the squares of all
elements in their feature vectors.
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6.2 Optimized Protocol

The protocol below includes all the aforementioned optimizations.

– Protocol Input: C’s input is a set of feature vectors X = {X1, . . . , Xv}, with Xn =
(xn,1, . . . , xn,`) and key pair (pk, sk). S’s input is Y = {Y1, . . . , Yw} where Ym =
(ym,1, . . . , ym,`) is a feature vector.

– Protocol Output: C’s output is the number of feature vectors Xn ∈ X that have
square Euclidean distance smaller than ε2 with at least one vector from Y; i.e., |Ψ̂ |.

Protocol steps:
1. For each n = 1, . . ., v and i = 1, . . . , `, C encrypts {〈Enc(xn,i),Enc(cn) = Enc(

∑`
i=1 x

2
n,i)〉}

and sends results to S.
2. For each m = 1, . . . , w, S computes {Enc(sm) = Enc(

∑`
j=1 y

2
m,j)}.

3. For each n = 1, . . . , v and m = 1, . . . , w, S computes the encrypted square Euclidean
distance between Xn and Ym as

Enc(dn,m) = Enc

(∑̀
i=1

(xn,i − ym,i)2
)

= Enc(cn) · Enc(sm) ·
∏̀
i=1

(
Enc(xn,i)

(−2ym,i)
)

4. For each n = 1, . . . , v and m = 1, . . . , w, S randomizes the value computed in the
previous step as: Enc(d̂n,m) = Enc(dn,m) · Enc(rn,m), where rn,m is uniformly selected
from the message space. Then, S shuffles these values and sends them to C.

5. C decrypts all {Enc(d̂n,m)}; C and S evaluate a garbled circuit over input {Enc(d̂n,m)}
for C and {−rn,m}, ε2 for S. The circuit implements functionality (d̂n,m+(−rn,m)) < ε2,
where addition is performed modulo 2N for some N .

6. C outputs γ =
∑v
n=1

∑v
m=1 δn,m.

7 Implementation and Performance

In this section we provide implementation details for our protocols, and report on perfor-
mance measurements. All protocols are implemented in C. Our code is compiled using GCC
4.2 and relies on the GMP library to implement number-theoretic cryptographic operations
and on OpenSSL for symmetric cryptography. Tests are run under Ubuntu 8.04 LTS.

Measurements are performed on a machine with two quad-core 2.5 GHz Intel Xeon CPUs
and 16 GB memory. In order to provide results comparable with the state of the art, we
restrict our code to run on a single CPU core. However, since there is no data dependency in
the steps that represent the bulk of the computation, our protocols scale virtually linearly
with the number of available cores.

We instantiated DGK with a 1024-bit modulus. We also set the security parameter
t = 160 and u = 220, since the largest plaintext value in our dataset does not require over
19 bits. Our garbled circuit implementation uses the OT protocol in [33] for transferring
keys corresponding to input wires. It reduces OTML to OTκκ. We set the security parameter
κ = 80, M = 20 (since we selected u = 220) and L = 128 (the symmetric key size)6. We

6 L is dictated by the key size of AES – used to encrypt input wires in the garbled circuit – rather
than by security reasons. In fact, using an 80-bit key would provide the desired level of security.
However, performance-wise there would be virtually no difference.
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assume that the data-independent part of OT is performed by C and S prior to running
AS-PPCML. All performance results in this section correspond to the average of 50 runs.
Step-3 of the PPCML protocol is optimized by pushing most of the computation to the
unencrypted domain: S computes

∑
i y

2
n,i and then encrypts the result.

On-Line Computation Complexity.

Table 2: Breakdown of the server- and client-side on-line computation of our PPCML pro-
tocol for v = w = 300

Server

Step-3: Euclidean Distance 518.9 s

Step-4: Comparison 125.15 s

Step-5: Multiplication 179.4 ms

Step-6: Exponentiation 7.386 ms

Total ≈ 10.7 min

Client

Step-4: Comparison 1096.83 s

Step-7: Decryption 39.11 ms

Total ≈ 18.3 min

Table 2 illustrates our measurements, where both C and S hold 300 feature vectors (i.e.,
v = w = 300). For C, the total cost is dominated by the homomorphic comparison, while
the most expensive step for S is the computation of the Euclidean distance.

Table 3: Breakdown of the server- and client-side on-line computation of our basic S-PPCML
protocol for v = w = 300

Server

Step-3: Euclidean Distance 518.9 s

Step-4: Comparison 125.15 s

Step-5: Multiplication 179.4 ms

Step-6: Comparison 417.2 ms

Step-7: Multiplication 0.598 ms

Total ≈ 10.7 min

Client

Step-4: Comparison 1096.83 s

Step-6: Comparison 3.66 s

Step-8: Decryption 0.13 ms

Total ≈ 18.3 min

Table 4: Breakdown of the server-side and client-side on-line computation of our AS-PPCML
protocol for v = w = 300

Server

Step-3: Euclidean Distance 518.9 s

Step-4: Randomization 180 ms

Step-7: Comparison 10.8.s

Total ≈ 8.8 min

Client

Step-5-a: Decryptions 11.7 s

Step-5-b: Comparison 11.1 s

Total 22.8 s

Tables 3 shows the computation cost of our basic S-PPCML protocol, while Table 4
shows the breakdown of the computations of the AS-PPCML Protocol. The use of a garbled
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circuit for comparing Euclidean distance with the threshold has a great impact on the
performance of the AS-PPCML protocol. In particular, total time is reduced by a 1.2x
factor for the server and by a 48x for the client.

On-Line Communication Complexity. The on-line communication cost is proportional
to v · w. Let |N | indicate the number of bits corresponding to a DGK ciphertext. The
following exchanges of information contribute to the total bandwidth (on-line) required by
the PPCML protocol:

– The encrypted vectors sent by C to S account for ((2701 + 1) · v) · |N | bits.
– The homomorphic-based comparison – (2 ·M + 3) · w · v · |N | bits.
– The results sent by S to C – v · |N | bits.

Thus, the on-line data exchanged between C and S amounts to (2701 · v + (2 ·M + 3) ·w ·
v + v) · |N | bits. In our setting, this amounts to 572 MB.

Similarly, the on-line communication cost of the S-PPCML protocol is (2701 · v + (2 ·
M + 3) · w · v + (2 ·M + 3) · v + 1) · |N | bits, i.e., 573 MB in our setting.

Finally, the AS-PPCML protocol relies on a garbled circuit for comparison, which incur
on-line communication cost of 2 ·M · (L + κ) · w · v bits. Therefore the total cost of the
AS-PPCML protocol is ((2701 · v + w · v) · |N |+ 2 ·M · (L+ κ) · w · v) bits, corresponding
to 200 MB in our setting.

8 Conclusion

In this paper we have introduced a set of protocols that implement PPCML and
S-PPCML/AS-PPCML functionalities. The first allows two parties representing two user
communities – e.g., two review websites – to privately determine which users belong to
both communities. The second protocol allows the parties to privately compute how many
users they have in common. Our protocols compare user-generated content rather than user
identifiers, such as user-IDs or IP addresses.

We implement our protocols and measure their performance on commodity hardware.
Our results indicate that the overhead introduced by the privacy-preserving computation
is relatively small. In particular, two parties which hold 300 users each can determine the
number of common users in a matter of minutes.

As for the future work, we plan to optimize our protocols for multi-core CPUs. Parallel
implementation of our protocols can provide significant speedup, allowing clusters with
hundreds of CPUs to run protocols over sets of millions of users.
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A Security Analysis

Security of the protocol presented in Section 5 is based on that of security assumptions
about our building blocks. In particular, we assume that DGK encryption is semantically
secure. This was shown in [23,22] under the RSA setting.

We now outline how to simulate the view of C and S using each party’s inputs and
outputs only. We show that such simulation is indistinguishable from a real execution of
the protocol. This allows us to claim that the protocol is secure in the honest-but-curious
(HbC) model.
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C’s input consists of a feature vector and a private key, while its output is a single
bit b. Given these values, the simulator constructs messages to C as follows: during the
comparison protocol (Step 4) the simulator sends encryptions of random values to C. Since
DGK is semantically secure, C cannot detect it. Then, if b = 0 the simulator returns to C
u = Enc(0) and u = Enc(r) (for a random r) otherwise. Since the outcome of decryption is
distributed identically to that what C expects, simulation cannot be detected.

S’s input is a database consisting of w feature vectors; S has no output. The simulator
encrypts two random values per each element of the feature vector and sends them to S.
Since DGK is semantically secure, S cannot detect that the message from the simulator
represents encryption of random values. During privacy-preserving comparison, the simula-
tor sends encryption of random values to S (Step 4). S, however, cannot decide with any
non-negligible probability that these values are indeed random.

An analogous argument extends to the protocols in Section 6. However, security of these
protocols relies on two additional assumptions: (1) oblivious transfer used is for garbled
circuit evaluation is secure; and (2) garbled circuit evaluation is secure.

Assumption (1) holds if the hash function used to instantiate the oblivious transfer pro-
tocol in [33] is either correlation-robust, or modeled as a random oracle. Also, [33] requires
the use of a secure pseudorandom generator. With respect to (2), security of garbled circuits
with “free-XOR” was proven under the assumption that the hash function is correlation-
robust under the definition of [19], or is instantiated as a random oracle.
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