
Computer Networks 57 (2013) 3178–3191
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
A lightweight mechanism for detection of cache pollution
attacks in Named Data Networking
1389-1286/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comnet.2013.07.034

⇑ Corresponding author. Tel.: +39 049 827 1488.
E-mail address: conti@math.unipd.it (M. Conti).
Mauro Conti a,⇑, Paolo Gasti b, Marco Teoli a

a University of Padua, Department of Mathematics, Via Trieste, 63-35131 Padua, Italy
b New York Institute of Technology, School of Engineering and Computing Sciences, 1855 Broadway-New York, NY 10023-7692, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 8 January 2013
Received in revised form 16 June 2013
Accepted 10 July 2013
Available online 28 August 2013

Keywords:
Named data networking
Cache pollution attack
Security
Content-Centric Networking (CCN) is an emerging paradigm being considered as a possible
replacement for the current IP-based host-centric Internet infrastructure. In CCN, named
content – rather than addressable hosts – becomes a first-class entity. Content is therefore
decoupled from its location. This allows, among other things, the implementation of ubiq-
uitous caching.

Named-Data Networking (NDN) is a prominent example of CCN. In NDN, all nodes (i.e.,
hosts, routers) are allowed to have a local cache, used to satisfy incoming requests for con-
tent. This makes NDN a good architecture for efficient large scale content distribution.
However, reliance on caching allows an adversary to perform attacks that are very effective
and relatively easy to implement. Such attacks include cache poisoning (i.e., introducing
malicious content into caches) and cache pollution (i.e., disrupting cache locality).

This paper focuses on cache pollution attacks, where the adversary’s goal is to disrupt
cache locality to increase link utilization and cache misses for honest consumers. We show,
via simulations, that such attacks can be implemented in NDN using limited resources, and
that their effectiveness is not limited to small topologies. We then illustrate that existing
proactive countermeasures are ineffective against realistic adversaries. Finally, we intro-
duce a new technique for detecting pollution attacks. Our technique detects high and
low rate attacks on different topologies with high accuracy.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

In recent years there have been several efforts to design
a viable replacement for the current IP-based Internet
[23,32,22,24,9]. These new architectures are designed to
better serve today’s needs and allow the current growth
rate of the Internet to continue for the foreseeable future.
In particular, there have been significant effort to provide
better mobility, scalability and efficient content distribu-
tion. Additionally, strong security has been one of the main
design requirements for these architectures.
Named Data Networking (NDN) [23], is one of these
architectures, as well as a prominent example of
Content-Centric Networking (CCN) (also known as
Information-Centric Networking, or ICN). In CCN, content
– rather than hosts – occupies the central role in the com-
munication architecture.

NDN is primarily oriented towards efficient large-scale
content distribution. Rather than establishing direct IP con-
nections with a host serving content, NDN consumers di-
rectly request (i.e., express interest in) pieces of content
by name; the network is in charge of finding the closest
copy of the content, and of retrieving it as efficiently as pos-
sible. One of the key features enabled by this decoupling of
content and location is pervasive caching. Each NDN router
can, in fact, provide an arbitrary amount of cache that can

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2013.07.034&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2013.07.034
mailto:conti@math.unipd.it
http://dx.doi.org/10.1016/j.comnet.2013.07.034
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

M. Conti et al. / Computer Networks 57 (2013) 3178–3191 3179
store forwarded content for subsequent retrieval. This al-
lows NDN to transparently and automatically implement
efficient multicast, content replication, load balancing and
fault tolerance.

However, pervasive caching exacerbates security prob-
lems related to shared caches, including privacy [1], pollu-
tion [11] and poisoning [29]. In this paper we focus on
cache pollution attacks with respect to NDN. In a cache
pollution attack, the goal of the adversary is to force rou-
ters (i.e., the victims of the attack) to cache non-popular
content. Therefore, a successful attack reduces cache hits
of content requests from legitimate consumers (secondary
victims), affecting overall network performance and
increasing link utilization.

Cache pollution attacks do not prevent users from
retrieving content. Nonetheless, some work considers
them a distributed denial-of-service (DDoS) [33,11]. Deng
et al. show that even a moderate degradation of hit ratio,
on large and popular content, can increase the amount of
traffic not served by caches by a few orders of magnitude
[11]. They point out that ‘‘Long periods of severe service
reduction [. . .] can on average degrade service more than
classical high-rate DoS attacks are capable of’’. We are not
interested in arguing whether cache pollution falls under
the umbrella of DoS/DDoS attacks; besides, our experi-
ments confirm that the impact of cache pollution on rou-
ters and on end users is significant and deserves careful
study.

Contribution. In this paper we address cache pollution
attacks in NDN. In particular:

� Previous work on cache pollution in NDN/CCN only
focuses on small topologies (one to nine routers
[33,11]); in this paper, we show that the attack scales
to large topologies, without requiring substantially
more resources on the adversary’s side. Our findings
provide further evidence that cache pollution attacks
are a realistic threat in large-scale NDN deployments.
� We confirm that proactive countermeasures identified

in previous work scale to complex networks, assuming
the same (simple) adversarial behavior.
� We show how to improve the cache pollution attack

considered in [33]. Under our attack, existing tech-
niques for cache robustness do not provide any benefit.
In particular, in some circumstances, caches imple-
menting such countermeasures perform worse than
the same caches without them.
� Given this state of affair, we argue that an effective

approach for mitigating cache pollution attacks could
be based on a lightweight detection phase, associated
with a (possibly more expensive) reaction protocol.
We propose a new cache pollution detection algorithm,
and evaluate it via simulations. Our simulations are per-
formed on realistic network topologies such as the
Deutsches Forschungsnetz (‘‘German Research Net-
work’’, DFN) [18].

We emphasize that the goal of this paper is not to solve
the problem of cache pollution. Rather, we highlight that
existing proactive techniques, which are believed to be
effective against this attack, fail in presence of a slightly
‘‘smarter’’ – although still very simple – adversary. We
then show that an approach different from the current
state of the art can provide better performance at a lower
cost in realistic scenarios.

Organization. The rest of the paper is organized as fol-
lows. In Section 2 we provide a short overview of NDN.
In Section 3 we introduce previous work on cache pollu-
tion, and overview state-of-the-art detection and mitiga-
tion techniques for IP caching proxies and NDN. In
Section 4 we present the threat model and adversarial
strategy considered in our work, while in Section 5 we de-
scribe the setting used in our simulations. In Section 6 we
assess the effectiveness of cache pollution attacks in NDN.
Next, we describe and evaluate our detection mechanism
in Section 7. We conclude in Section 8.

2. NDN overview

NDN is based on the pull model, where content is in-
jected into the network only in response to a consumer’s
explicit request. NDN supports two types of messages:
interests and content objects [7]. Each content object has a
name (possibly human-readable), a payload and a digital
signature computed by the content producer. (Content ob-
jects contain additional fields not relevant for this work).
Names are made up of one or more components, with hier-
archical structure. In NDN notation, ‘‘/’’ separates name
components, e.g., /ndn/com/cnn/politics/front-

page. Large pieces of content are split into fragments with
predictable names: e.g., fragment 5 of Alice’s photo could
be named /flickr/alice/photo-1.jpg/5. In case of
multiple content objects under a given name, optional con-
trol information can be carried within the interest to re-
strict desired content.

NDN routers forward interests towards the content pro-
ducer(s) responsible for the requested name, using name
prefixes (instead of today’s IP prefixes) for routing. For-
warding Information Base (FIB) is a lookup table used to
determine interfaces for forwarding incoming interests.
Multiple concurrent entries for the same prefix are al-
lowed, supporting multipath delivery. Each NDN router
maintains a Pending Interest Table (PIT) – a lookup table
containing outstanding [interest,arrival-interfaces] entries.
For efficiency’s sake, multiple pending interests for the
same content are collapsed: only the first interest is for-
warded, and the returned content is sent back to all the ar-
rival interfaces. Upon receipt of the interest, the producer
injects content into the network, thus satisfying the inter-
est. The requested content is then forwarded towards the
consumer, traversing – in reverse – the path of the corre-
sponding interest. Each router on the path flushes the state
(i.e., deletes the PIT entry) corresponding to the satisfied
interest.

The behavior described above applies mainly to content
that is requested for the first time. In fact, a key feature of
NDN is distributed caching. In particular, each router that
forwards a content may cache a copy of the content in
the router’s local Content Store (CS). (In the rest of the pa-
per we use the terms CS and cache interchangeably.) NDN
does not mandate any specific cache size or cache manage-
ment algorithm. Each router is free to select what to cache

3180 M. Conti et al. / Computer Networks 57 (2013) 3178–3191
according to local information. Distributed caching allows
NDN to implement efficient large-scale content distribu-
tion. Producers do not need to issue a copy of their content
for each consumer request; consumers always retrieve the
closest available copy of requested content.

3. Related work

Cache pollution attacks have been widely studied in IP-
based networks, mostly with respect to caching of web
traffic. In [11], Deng et al. propose two generic classes of
cache pollution attacks: locality-disruption and false-local-
ity. In a locality-disruption attack, the goal of the adversary
is to maliciously alter cache content locality, e.g., by flat-
tening the distribution of content requests. This attack
can be implemented issuing requests for (new) non-popu-
lar content. A false-locality attack aims at maliciously
increasing the popularity of a (usually small) fraction of
the available content. The adversary implements this at-
tack issuing a large number of requests for the same pieces
of content. Deng et al. show that even a moderate degrada-
tion of cache hit-ratio can increase network traffic by one
or more orders of magnitude when it affects large/popular
content.

In [11], the authors also propose a detection mechanism
for both types of attack. In case of false locality, their tech-
nique keeps track of the absolute number of repeated
requests, and of the ratio of repeated requests over the
number of cache hits. When both metrics exceed given
thresholds, corresponding sources are identified as mali-
cious. Detection of locality disruption is performed mea-
suring hit ratio and lifetime of cached content. When
they drop below predefined values, the cache is considered
under attack. Attack mitigation relies on identifying the
source of malicious requests. For this purpose, the authors
use content requestors’ IP addresses.

While the approaches of Deng et al. work well on IP-
based networks, it is not clear how to extend it to NDN
(and, in general, CCN). Interests in NDN do not carry iden-
tifying information about the consumer(s) who issued
them. As such, routers cannot keep statistics on repeated
interests from the same host. Furthermore, the availability
of caches at each router creates a ‘‘dampening’’ effect on
consumers’ interests: the traffic observed by a router var-
ies depending on what its neighbors have retained in their
cache.

Park et al. [27] consider pollution attacks in the context
of content caching. The authors propose a detection mech-
anism based on randomness of content requests, measured
on caching nodes (e.g., NDN routers). Each node stores sta-
tistics on incoming requests in a matrix. When the entropy
of the matrix falls below a threshold, the router detects an
attack in progress. This technique does not rely on source
addresses of requests and can be applied to both IP- and
NDN-based networks. In fact, while Park et al. consider
Internet caching at large, they mention CCN as a possible
scenario. The analysis presented in [27] is based on a single
caching node, connected to a consumer, a producer and an
adversary. The results of this analysis cannot be directly
extended to realistic NDN topologies, generally composed
of many consecutive caching routers, because of the effects
of the aforementioned ‘‘dampening’’ effect on traffic
randomness.

The storage cost of the approach of Park et al. is Oð
ffiffiffiffi
N
p
Þ,

where N is the size of the cache. From the computational
point of view, the two most expensive operations are: (1)
the computation of a collision-resistant hash function for
each forwarded packet; and (2) the computation of the
rank of the matrix. This is in contrast with our approach,
for which the amount of storage required for detection is
independent from the cache size; moreover, we do not
require the computation of collision-resistant hash
functions.

Meta cache algorithms have been proposed (see, e.g.,
[20,8]) to improve the efficiency of multi-level caching
architectures, such as web caching and CCNs. However,
to the best of our knowledge, none of these techniques is
designed to limit the effect of parties exhibiting adversarial
behavior. Laoutaris et al. [21] introduce a technique that
mitigates the effects of selfish behavior on multi-level
caching. More related to our work, the authors also briefly
discuss how to extend their approach towards mistreat-
ment-resilient caching, although this is mostly left to
future work.

As the time of this writing, CacheShield [33] is the only
countermeasure for cache pollution attacks specifically de-
signed for (and evaluated on) NDN. Given the relevance of
CacheShield to our work, we provide a detailed overview
below.

According to Breslau et al. [6] Web page requests on the
Internet follow a Zipf-like [34] distribution. The same dis-
tribution is assumed in many subsequent papers (e.g.,
[11,27,33]). Nonetheless, we note that other works have
argued that, under some circumstances, this does not
apply to Internet traffic in general. For example, Guo
et al. [16] claim that Internet traffic follows a Stretched
Exponential distribution [17], and provide some results
to support their thesis. Dán and Carlsson [10] provide an
extensive analysis of peer-to-peer traffic. They conclude
that content distribution follows a power-law with expo-
nential cutoff [15]. In evaluating our approach, we assume
that honest consumers request content according to a Zipf-
like distribution. However, we show evidence that varying
such distribution does not alter the performances of our
technique. In particular, our approach performs detection
on single nodes that are not aware of the overall traffic dis-
tribution. Therefore, we do not assume that the traffic they
receive fully represents the overall traffic distribution.

Cache replacement algorithms play an important role in
the analysis of cache pollution attacks. Deng et al. [11] ob-
serve that the impact of malicious users with respect to
cache pollution strongly depends on the replacement algo-
rithm in use. (This finding is confirmed by our results.)
Different categorization of caching algorithms has been
provided in several surveys [28,5,3]. We adopt two
replacement techniques covered by the aforementioned
literature: recency-based and frequency-based policies.

For the study performed in this work, we selected LRU
(Least Recently Used) from the former class: when the
cache is full, LRU always replaces the object that was re-
quested less recently. From the latter class, we adopted
LFU-DA (Least Frequently Used with Dynamic Aging). Both

M. Conti et al. / Computer Networks 57 (2013) 3178–3191 3181
the algorithms have been selected, after extensive analyses
[4,13,12], by Squid [30], one of the most popular caching
proxies. Although caching proxies and routers’ CS do not
have identical goals and restrictions, we argue that cache
replacement policies that perform well in the former are
a good starting point for the latter.

3.1. CacheShield

In [33] Xie et al. introduce CacheShield, a technique
with the goal of improving NDN cache robustness against
pollution attacks – in particular locality disruption. Cache-
Shield tries to prevent non-popular content from being ca-
ched. When a CacheShield-enabled router receives a
content object, the CS evaluates a shielding function that
determines whether the content object should be cached.
If the shielding function returns true, the router forwards
the interest and caches the corresponding content object.
If the shielding function returns false, only the name of
the returned content object (or the hash of its name) and
a counter are stored in the cache as a placeholder. If the
same (still not cached) content object is requested again,
the corresponding counter is increased and the shielding
function is re-evaluated on the updated counter.

Any replacement policy (e.g., LRU, LFU) can be used in
conjunction withCacheShield. Once the cache is full, con-
tent placeholders (i.e., NDN names and counters) are sub-
ject to the same replacement rules as cached content.

In order to establish whether a content object should be
cached, the shielding function executes a random choice
based on a logistic function [31]; the authors propose the
following instantiation:

wðtÞ ¼ 1
1þ eðp�tÞ=q

where parameters p and q can be tuned in order to achieve
the best results. Using synthetic data and multiple small
topologies (with up to nine routers), Xie et al. determined
that the shielding function generally works well with
p = 20 and q = 1. For a fair comparison with CacheShield,
we also evaluate our approach using the largest of the
topologies in [33], in addition to a larger (and more realis-
tic) one.

Further details and discussion on the implementation of
CacheShield in our simulations are provided in Section 5.
4. Threat model and attack strategy

We assume that the adversary can compromise a
(small) set of consumers, and use them to issue interests.
The adversary does not have any special privilege – e.g.,
it cannot alter setup parameters of caching algorithms.
These assumption are similar to those in previous work
(e.g., [33,11]). (While we do not exclude that attacks might
come from compromised routers, we leave the investiga-
tion of this as future work.) The adversary is not allowed
to generate new content. However, it can request any
existing content object from legitimate producers.

We impose restrictions on resources available to the
adversary. In particular, the aggregate bandwidth available
to the consumers controlled by the adversary is between
2% and 250% of the bandwidth of honest consumers. This
allows us to explore the effects of moderate- and low-
bandwidth attacks, and whether countermeasures are able
to identify or mitigate them. We indicate the ratio of attack
rate to legitimate users rate with c. As an example, c = 0.02
indicates that the adversary issues 2% of the total number
of interests issued by legitimate users.

We argue that, under the assumption above, the adver-
sary strategy for generating interests in Xie et al. [33] is
sub-optimal. In particular, in their work the authors as-
sume that the adversary issues interests for all existing
content with equal probability. In the rest of the paper,
we refer to this strategy as broad-selection. While broad-
selection works relatively well against caching algorithms
based on LRU, according to our results (see Section 6) this
attack is not very effective against LFU-based cache
replacement algorithms.

In order to implement a more effective attack (false-
locality) taking into account the aforementioned bandwidth
limitations, the adversary could focus on a carefully-chosen
small subset of the available content. We refer to this strat-
egy as smart-selection. Assuming Zipf-like traffic distribu-
tion, smart-selection focuses on the tail of such
distribution – i.e., on the least-requested content.

The Zipf distribution is characterized by a long tail – i.e.,
there is a large number of items which are requested
rarely, with roughly the same number of requests. The
number of non-popular items is significantly larger than
the number of popular ones, and in practice larger than de-
ployed caches. Hence, the impact of the attack does not
vary significantly if the adversary does not pick exactly
the least-requested content objects. In practice, the adver-
sary will implement this attack making use of publicly
available information about distribution of content
requests. It is in fact safe to assume that the adversary
can construct a list of globally not-so-popular content
(e.g., local news from ten years ago), or locally not-so-pop-
ular pieces of content (e.g., news in French language in a
non-French-speaking country).
5. Evaluation environment

We evaluate attacks and countermeasures discussed in
this paper via simulations. We rely on ns-3 [25], a well-
known open-source discrete-event network simulator.
ns-3 supports wired and wireless networks based on IP
or other protocols. NDN functionalities are provided by
ndnSIM [2], a module for ns-3 developed at UCLA as part
of the NDN project. The structure of ndnSIM is cleaner
and more extensible than that of other NDN simulation
environments [2]. ndnSIM is implemented as a new net-
work-layer protocol, which can run on top of any available
link-layer protocol (point-to-point, CSMA, wireless, etc.).

For our simulations, we consider two topologies, as
illustrated in Fig. 1: Xie-complex (XC) and the German Re-
search Network (DFN). XC corresponds to the ‘‘Complex
Network’’ considered in [33], and allows us to compare
our results with those in [33]. The DFN topology has been
identified in previous work as a meaningful topology for

Fig. 1. Network topologies used for simulations.

3182 M. Conti et al. / Computer Networks 57 (2013) 3178–3191
simulations [18]. This allows us to provide a more realistic
assessment of our technique.

All our simulations span over twenty-four hours, and
follow a similar pattern. During the first twelve hours, all
interests are issued only by legitimate consumers; requests
follow the Zipf law. This allows caching algorithms, and
especially CacheShield, to ‘‘stabilize’’ their internal state
according to the forwarded traffic. Then, adversary-con-
trolled consumers start issuing interests.

As in Xie et al. [33], the domain of possible content ob-
jects is static, and the CS on all routers is limited to the
same size. We fix the total amount of content available
on the network, and limit the size of routers’ CS to 1% of
the content domain. Consumers’ requests follow a Zipf-like
distribution (Zipf with parameter a set to 0.9), while the
adversary requests content according to the uniform distri-
bution. For the sake of simplicity, we also follow the
assumption that all content objects have the same size.

Let # indicate the total number of content objects used
by the adversary during the attack, as a fraction of routers’
cache size. We vary # from 50% of routers’ cache (# = 0.5) to
the whole content domain (# = 100). The latter scenario is
equivalent to the uniform attack of [33]. We also include
‘‘no attack’’ as a reference, and indicate it with # = 0.

In [33], the authors state that CacheShield’s statistics for
names should be stored in the CS. This implies that the
more CacheShield’s statistics grow, the less space is avail-
able for caching content. Furthermore, the authors do not
discuss how to partition the CS between content caching
and caching statistics for best performance. For this reason,
we implement CacheShield using a separate storage area:
new statistics added to this area do not reduce the space
available to cached content. Moreover, we do not impose
any limit to the space used by statistics. Hence, our simu-
lations provide an upper bound on the performances that
can be expected from CacheShield.

Finally, we consider LRU and LFU with dynamic aging
(LFU-DA), as cache replacements techniques.

6. Effects of cache pollution attacks

In this section, we assess how attacks based on broad-
selection and smart-selection affect our topologies. In
particular, we are interested in determining whether the
adversary can have an impact on cache hit ratio, and con-
sequently increase average hop count of consumers’ re-
quests. We emphasize that, as in Xie et al. [33], we limit
our adversary to only issue interests. In other words, the
adversary cannot generate content on one side of the net-
work, and request it on the other. This way, it must rely on
legitimate producers to implement the attack.

Effects of the Attack on Hit Ratio. Fig. 2 shows the average
hit ratio (per router) of routers’ caches in the XC network.
The figure reports hit ratio at the end of the simulations.
For clarity, in Fig. 2 (as well as in other figures in this pa-
per), we report only results for selected routers.

We observe that the impact of the attack on routers
implementing LRU is greater than that on routers using
LFU-DA, especially for large # and without CacheShield.
With LFU-DA the adversary must in fact request the same
non-popular content objects often to make them ‘‘artifi-
cially’’ popular. Spreading the attack over a large set of con-
tent objects alters the request frequency of each content
only slightly, causing limited impact on LFU-DA. However,
when using LRU, requesting new content pushes older
(legitimate) content objects out of routers’ caches, making
the attack effective.

Our results confirm that CacheShield performs well
with # = 100 – as expected from the findings of Xie et al.
[33]. However, varying the subset size we were able to sig-
nificantly limit the effectiveness of CacheShield. In particu-
lar, with 0.5 6 # 6 2 CacheShield provides no advantage
over straightforward LRU or LFU-DA. In our experiments
we noticed that, under specific conditions, activating
CacheShield decreases the ratio of cache hits. For example,
for # = 0.5 router R8 with LRU and CacheShield, has a hit
ratio of 0.07 (see Fig. 2(b)), compared to 0.1 without Cache-
Shield (see Fig. 2(a)). Another example of loss of perfor-
mance when activating CacheShield is router R2 for # = 1,
using both LRU and LFU-DA.

The effects of the attack on the adversary’s first hop
determines how the attack propagates to the rest of the
network. Content cached on the first hop prevents part of
the attack to spread further. Intuitively, if the number of
content objects requested by the adversary is smaller than
the size of the cache, maliciously crafted interests will not

Fig. 2. Hit-ratio on XC topology using different subset sizes, for c = 1.7.

M. Conti et al. / Computer Networks 57 (2013) 3178–3191 3183
propagate besides the first victim, since they are satisfied
by the first router. This accounts, e.g., for the increased
hit ratio observed by R5 in Fig. 2(c) for # = 0.5. Analogously,
while the impact of the attack on R8 for # > 1 is somewhat
reduced, the effect on subsequent routers is more pro-
nounced. The same observation holds for a larger and more
Fig. 3. Hit-ratio on DFN topology using
complex topology – namely, the DFN – as shown in Fig. 3.
For the DFN and LFU-DA, the value # for which router R2
experiences the best performance is # = 1: both with
CacheShield (Fig. 3)) and without CacheShield (Fig. 3(c)).
This is also true for LRU with CacheShield (Fig. 3(b)), but
not for LRU without CacheShield (Fig. 3)(a). We also
different subset sizes, for c = 2.5.

Fig. 4. Effects of attacks on hit-ratio on XC topology for selected routers, with c = 1.7.

3184 M. Conti et al. / Computer Networks 57 (2013) 3178–3191
observe that for R5 and # = 0.5, the hit ratio of LRU is 0.15,
which is 25% higher than that of LRU with CacheShield
(0.12). This observation highlights that a single-router
topology, as used in previous work [27], is not sufficient
to determine the effectiveness of pollution attacks and
detection/countermeasures.

Figs. 4 and 5 compare the effects of attacks over time
with # = 1 and # = 100, for one router in each topology.
Using the settings for CacheShield identified in [33] and re-
ported in Section 3.1, content objects are requested about
20 times before being cached. For this reason, CacheShield
negatively affects cache hits over the course of the first 2–
3 h in our simulations. In general, this may indicate that a
CacheShield-enabled CS requires a considerable amount of
time to adjust to changes in content requests distribution.
Additionally, the cost of CacheShield in terms of storage
and computation is significant. Despite the authors’ claim
that the space required to store placeholders containing
names (or their hashes) is negligible, our experiments
show that the number of names stored during network
activity is one order of magnitude higher than the number
of objects in cache. Routers could allocate a small partition
of CS for placeholders; however, this may negatively affect
CacheShield’s performance.

Small values for # may not allow the attack to propa-
gate besides one or two hops. For this reason, measuring
the effects of the attack only in terms of hit ratio may
not be sufficient. Therefore, we measure average hop count
of content objects.

Effects of the Attack on Average Hop Count. We measure
average hop count to better assess the effects of cache pol-
lution attacks on different topologies. It is well known that,
at least in the current IP-based Internet, round-trip time is
directly connected to hop count [14].1 Therefore, we con-
sider this a meaningful metric for determining the impact
of the attack on consumers.

Fig. 6 shows the average hop count for different values
of #. As expected the worst-case scenario for LRU is with
= 100. In this case, CacheShield is able to successfully
mitigate this attack. However, for smaller # the benefits
of CacheShield are almost non-existent. A similar behavior
can be observed for LFU-DA and LFU-DA with CacheShield.
In general, attacks with # set to a value slightly higher than
1 Not surprisingly, experiments on the official NDN testbed confirm that
this holds also for NDN.
1 provide the strongest impact, since malicious interests
cannot be immediately satisfied by the router one hop
away from the adversary.

In the XC topology the effects of the attack are more
evident for consumer C2 (see Fig. 6). In fact C2 shares its
first-hop router with the adversary. The effects on C0 and
C3 are more limited, since they are a few hops away from
the adversary. These results also show that LRU with
CacheShield’s behaves similarly to LFU-DA, since both
algorithms maintain analogous information about requests
frequencies. With both LFU-DA and CacheShield, the high-
est impact is obtained with # close to one.

The same experiments were also performed on the DFN
topology, leading to similar results. This supports our claim
that cache pollution affects both small and large topolo-
gies, and the effectiveness (or lack thereof) of CacheShield
does not depend on the network size or structure. Fig. 7
summarizes our findings with respect to average hop
count on DFN.

7. Detection of cache pollution attack

Proactive techniques, such as CacheShield, may not be
the most appropriate approach against cache pollution at-
tacks. CacheShield must store a non-negligible amount of
state, corresponding to name placeholders and related sta-
tistics, reducing the space available to cache content. Addi-
tionally, this state may be used by the adversary to
implement attacks specific to CacheShield: if a router does
not specify a maximum quota for placeholders, an adver-
sary may be able to use them to saturate the router’s CS;
if it does specify a quota, the adversary’s goal may become
filling this state with useless information.

CacheShield must run continuously, and therefore
consume routers’ constrained storage and computing re-
sources, even when no attack is in progress. Our simula-
tions show that CacheShield is ineffective against some
(realistic) pollution attacks.

Therefore, we argue that relying on a lightweight attack
detection technique (which could then trigger possibly a
more resource-intensive reaction phase) may be a better
approach. The detection phase should make limited
assumption on the adversary’s behavior. Contrary to more
traditional DDoS attacks, where the service is actually de-
nied, routers victims of a cache pollution attack are not
usually able to determine whether the attack is in progress.

Fig. 5. Effects of attacks on hit-ratio on DFN topology for selected routers, with c = 2.5.

Fig. 6. Average number of hops on XC topology using different subset sizes, for c = 1.7. Results are illustrated per consumer.

M. Conti et al. / Computer Networks 57 (2013) 3178–3191 3185
In fact, content is still delivered to consumers when routers
are under attack – albeit with reduced performance.

We introduce a detection mechanism that is able to
identify cache pollution attacks, while requiring only lim-
ited resources. We show that realistic (successful) cache
pollution attacks vary the distribution of content requests
in a way that is detectable by routers.

7.1. Sampling interests distribution

Routers can learn how the forwarded traffic is distrib-
uted by counting how often each content object is returned
in response to an interest, normalizing the results by the
amount of forwarded traffic.2 Let p(i) be the probability va-
lue associated with content object i. We have:
2 Counting how many different interests are forwarded does not provide
reliable figures, since in NDN interests carrying different names may
retrieve the same content object due to longest prefix match.
pðiÞ ¼ nrðiÞP
j2SnrðjÞ
where nr(i) is the number of occurrences of content object i
and S is the reference sample set, i.e., a randomly selected
subset of the content domain. Unfortunately, even consid-
ering a relatively small S, analyzing all forwarded content
packets is not feasible on resource-constrained routers.

Randomly selecting part of the forwarded traffic re-
duces the cost of computing these statistics. There is how-
ever a tradeoff between the granularity of the sampling
and the amount of noise added by the process. In particu-
lar, a coarser sampling increases the probability of assign-
ing a wrong ‘‘weight’’ to items towards the tail of Zipf
distributions. On the other hand, the cost of a very fine-
grained sampling is difficult to justify with ever-changing
content, since expensive to compute statistics quickly be-
come useless as the content domain varies. In such circum-
stances, the process of computing content statistics must
be as fast as possible, in order to maintain some (limited)

Fig. 8. Attack detection on XC topology using LRU, c = 1.7.

Fig. 7. Average number of hops on DFN network for different subset sizes, for c = 2.5. Results are illustrated per consumer.

3186 M. Conti et al. / Computer Networks 57 (2013) 3178–3191
amount of (still fresh) historical data and avoid reporting
false positives.

Once p(i) has been estimated, our approach uses it to
measure variation across samples to determine ‘‘normal
behavior’’. Let m be a single measurement; Nm

r indicates
the size of such measurement. We define the variability
of a measurement as:
dm ¼
X
i2S

nm
r ðiÞ
Nm

r

� pðiÞ
� �

:

The maximum acceptable variability (threshold) as the
average of all measured dmi

, plus k times their standard
deviation:

Fig. 9. Attack detection on DFN topology using LRU, c = 2.5.

Fig. 10. Attack detection on XC topology using LFU-DA, c = 1.7.

M. Conti et al. / Computer Networks 57 (2013) 3178–3191 3187
s ¼
PM

i¼0dmi

M
þ k �

ffi
1
M

XM

i¼0

dmi
�
PM

i¼0dmi

M

 !2
vuut ð1Þ
where M is the total number of measurements.
Routers compute s in what we call learning phase. The

actual implementation we describe in the following exhib-
its a few differences from Eq. (1):

Fig. 11. Attack detection on DFN topology using LFU-DA, c = 2.5.

Fig. 12. Attack detection on XC topology using LFU-DA, c = 0.02.

3188 M. Conti et al. / Computer Networks 57 (2013) 3178–3191
1. s is computed on-line, so that its cost can be amortized
across the whole learning phase. Additionally, routers
temporarily suspend updating this value once it
becomes ‘‘stable enough’’. This makes the algorithm
more flexible, and less dependent on a specific network
topology or position of a router within this topology.

2. We use Knuth’s recurrence formulas [19] to compute
the mean and variance needed to determine s.

During our simulations, we observed that s takes longer
to become stable when computed on routers several hops
away from consumers. This can be explained by the effect
of routers’ caches close to consumers in ‘‘dampening’’ con-
sumer’s requests visible to ‘‘core’’ routers. Once caches are
populated and start getting a significant hit rate, the distri-
bution of interests they forward stabilizes. This is another
reason for allowing each router to autonomously evaluate
when s have become stable, rather that specifying a com-
mon learning timeframe.
7.2. Algorithm description

Our attack detection technique is detailed in Algorithm
1. It relies on two sub-routines, which correspond to a
learning step (Algorithm 2) and an attack test (Algorithm
3). We envision attack detection as part of the caching
algorithm of NDN routers. The caching algorithm first
builds a set S of content object IDs by performing random
sampling of a suitable number of packets. The detection
algorithm will keep track of this set and use it for deter-
mining whether an attack is in progress. Once S has been
populated, the router invokes Algorithm 1 on each for-
warded content object CO.

M. Conti et al. / Computer Networks 57 (2013) 3178–3191 3189
Algorithm 1. Attack_Detection
input: CO: ID of currently received content object;
S: reference sample set;
snap_size: size of measurement window;
analyzed_cos: number of analyzed content
objects;
co_count: array of counters for content objects in
S;
co_freq: array of frequencies of content objects;
s: threshold value;
rs: standard deviation of values assumed by s;
rmax: maximum acceptable value for rmax

to be considered stable;
output: true if under attack, false otherwise
1: result_of_detection false
2: Increment analyzed_cos
3: if CO 2 S then
4: Increment co_count[CO]
5: if ððanalyzed cosþ 1Þmodsnap sizeÞ ¼ 0 then
6: if Learning_step

(analyze_cos,snap_size,S,co_freq) then
7: // learning phase not yet completed

8: for all co 2 S do
9: co_count[co] 0
10: end for
11: else
12: // learning phase completed

13: result_of_detection Attack_Test
(CO,S,snap_size,co_freq,co_count)

14: end if
15: end if
16: end if
17: return result_of_detection
The algorithm first checks whether CO is in S. If it is so,
the algorithm updates the corresponding counter (co_-
count[CO]) and invokes the learning algorithm. The aim
of the learning algorithm is to extract features from for-
warded traffic. Such features are then used, once every
snap_size content objects, to determine whether an attack
is in progress. (snap_size is set at router deployment.) The
main feature computed by the learning algorithm is s,
i.e., the threshold for attack detection. This value corre-
sponds to what is computed by Eq. (1), and is determined
using Knuth’s algorithm [19]. Similarly, the variance of the
current threshold is computed using Knuth’s algorithm.

The end of the learning phase is determined by Learn-

ing_Step() – in particular, once enough samples have been
obtained, and their variance is below a threshold (rmax),
new invocation of the learning algorithm do nothing and
simply return false.

Algorithm 3 (Attack_Test()) works in a similar fashion: it
calculates the dm value for the current measurement, and
compares it with the threshold.
7.3. Evaluation

To evaluate our detection mechanism, we implemented
it on top of ndnSIM. The behavior of the adversary is the
same as described in Section 6. We considered different
values of # (between 1 and 100) and c (0.02–2.5, i.e., the
combined bandwidth available to the adversary is up to
2.5 times the combined bandwidth of all legitimate users),
to assess how these parameters affect the accuracy of our
detection algorithm.

Algorithm 2. Learning_Step

input: analyzed_cos: n. of analyzed cont. objects;
snap_size: size of measurement interval;
S: set of content objects;
co_freq: array of freq. of cont. objects;
s: threshold value;
rs: st. deviation of values assumed by s;
rmax: max acceptable value for rmax;

output: true if learning phase is not yet complete

1: if rs < rmax and analyzed cos
snap size > 20 then

2: return false
3: else
4: dm 0
5: for all i 2 S do
6: prev_co_count

co_freq[i] � (analyzed_cos � snap_size)

7: co freq½i� prev co count þ co count½i�
analyzed cos

8: dm dm þ co count½i�
snap size�co freq½i�

��� ���
9: end for
10: Update s as in Eq. (1), using Knuth [19]
11: Update rs using Knuth for variance [19]
12: return true
13: end if
Algorithm 3. Attack_Test

input: CO: Id of received cont. object;
S: reference sample set;
snap_size: size of measur. window;
co_freq: array of freq. of cont. objects;
co_count: array of counters

for cont. objects in S;
output: True if under attack, False otherwise
1: result_of_detection false
2: dm 0
3: for all i 2 Sdo

4: dm dm þ co count½i�
snap size�co freq½i�

��� ���
5: end for
6: if dm > sthen
7: result_of_detection true
8:end if
9: for allco 2 Sdo
10: co_count[co] 0
11: end for
12: return result_of_detection
The results of our simulations are summarized in
Figs. 8–11, for XC topology with LRU, DFN with LRU, XC

3190 M. Conti et al. / Computer Networks 57 (2013) 3178–3191
with LFU-DA, and DFN with LFU-DA, respectively. Due to
lack of space, we only report the results for # = 1 and
= 100 – intermediate values provide very similar results.
The results reported in Figs. 8 and 10 (i.e. XC topology) are
all for c = 1.7, while the results in Figs. 9 and 11 (i.e. DFN
topology) are for c = 2.5. We measure the performance of
our detection algorithms in terms of normalized dm, defined
as (dm/s) � 1.

Simulation results show that our technique can quickly
determine when a router is under attack or, more gener-
ally, affected by the attack. In particular, Figs. 8 and 9 show
that routers using LRU successfully detect the attack for all
values of # – even those for which CacheShield is ineffec-
tive. These results confirm that topology characteristics
only have limited impact on the performance of our detec-
tion algorithm. We notice that for XC and # = 100, the algo-
rithm only barely ‘‘flags’’ R5 as under attack, i.e. the
standard deviation is beyond the threshold (see Fig. 8(b)).
This is due to the fact that the attack has only minimal im-
pact on R5.

With LFU-DA, our detection algorithm performs equally
well (see Figs. 10 and 11). Even though the impact of the
attacks is more limited than with LRU, our mechanism de-
tects them on R8 and R5 on the XC topology, and on R5 on
DFN.

Attacks with very low rate, such as c = 0.02, are also de-
tected by our approach, as shown in Fig. 12. Low rate
detection was one of the headline features of the work of
Park et al. [27], and our results show that our algorithm
performs equally well. Additionally, the cost of our ap-
proach both in terms of computation and communication
is significantly lower than that of Park et al. In fact, for each
packet, their approach requires the computation of a colli-
sion-resistant hash function (SHA-1 was suggested as a
viable candidate in their paper). Moreover, their algorithm
computes the rank of an n � n matrix once every 2000 re-
quests (the detection window for which they get the best
performance), where n is O(

ffiffiffiffi
N
p

), with N indicating the size
of the cache. Since average case complexity for Gaussian
elimination is O(n2.5) with worst case O(n3) [26], the cost
of the algorithm is super-linear in the size of the cache.
This means that increasing the size of the cache on a router
may not provide the expected benefits due to the increased
cost of the detection algorithm. Hence, compared to [27],
our approach is less expensive both per-packet (we do
not compute any collision-resistant hash function) and
per-detection-window.
8. Conclusion

In this paper we have shown that cache pollution attack
is a realistic threat on NDN. Our experiments confirm that
the attacks previously demonstrated on very small topolo-
gies extend on larger and more realistic networks with no
additional effort. We have then showed that existing (pro-
active) countermeasures are ineffective against realistic
adversaries. We have argued that detecting and limiting
the attack may prove to be a better strategy. Simulations
show that our lightweight detection technique provides
very accurate results. Our results apply to different topolo-
gies, and are independent from the distribution of the traf-
fic routed by each node.

While we do not address attack reaction techniques, we
point out that possible strategies include rate limiting traf-
fic corresponding to malicious interests, to caching only
content that would not significantly change the detection
statistics. We leave further investigation on attack reaction
to future work.
Acknowledgments

Mauro Conti is supported by a EU Marie Curie Fellow-
ship for the Project PRISM-CODE (Grant No. PCIG11-GA-
2012-321980). This work has been partially supported by
the TENACE PRIN Project (Grant No. 20103P34XC) funded
by the Italian MIUR.
References

[1] G. Acs, M. Conti, P. Gasti, C. Ghali, G. Tsudik, Cache privacy in named-
data networking, in: ICDCS 2013, 2013.

[2] A. Afanasyev, I. Moiseenko, L. Zhang, ndnSIM: NDN Simulator for NS-
3. Technical Report NDN-0005, NDN, October 2012.

[3] W. Ali, S. Shamsuddin, A. Ismail, A survey of web caching and
prefetching, Int. J. Adv. Soft Comput. Appl. 3 (1) (2011) 18–44.

[4] M.F. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, T. Jin, Evaluating
content management techniques for web proxy caches, SIGMETRICS
Perform. Eval. Rev. 27 (4) (2000) 3–11.

[5] A. Balamash, M. Krunz, An overview of web caching replacement
algorithms, Commun. Surveys Tutorials IEEE 6 (2) (2004) 44–56.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and
Zipf-like distributions: evidence and implications, in: INFOCOM,
1999.

[7] CCNx Protocol, Retr. January 2013. <http://www.ccnx.org/releases/
latest/doc/technical/CCNxProtocol.html>.

[8] W. Chai, D. He, I. Psaras, G. Pavlou, Cache ‘‘less for more’’ in
information-centric networks, in: Networking, 2012, pp. 27–40.

[9] ChoiceNet – Evolution Through Choice, Retr, January 2013. <https://
code.renci.org/gf/project/choicenet/>.

[10] G. Dán, N. Carlsson, Power-law revisited: a large scale measurement
study of p2p content popularity, in: Proceedings of the 9th
International Conference on Peer-to-Peer Systems, USENIX
Association, 2010, pp. 12.

[11] L. Deng, Y. Gao, Y. Chen, A. Kuzmanovic, Pollution attacks and
defenses for internet caching systems, Comput. Netw. 52 (5) (2008)
935–956.

[12] J. Dilley, M. Arlitt, S. Perret, Enhancement and Validation of Squid’s
Cache Replacement Policy, HP Laboratories Technical Report HPL,
vol. 69, 1999.

[13] J. Dilley, M.F. Arlitt, Improving proxy cache performance: analysis of
three replacement policies, IEEE Internet Comput. 3 (6) (1999) 44–
50.

[14] B. Eriksson, P. Barford, J. Sommers, R. Nowak, A learning-based
approach for IP geolocation, in: PAM, 2010, pp. 171–180.

[15] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, X. Zhang, Measurements,
analysis, and modeling of BitTorrent-like systems, in: Internet
Measurement Conference, 2005, pp. 35–48.

[16] L. Guo, E. Tan, S. Chen, Z. Xiao, X. Zhang, Does internet media traffic
really follow Zipf-like distribution? in: SIGMETRICS, 2007, pp. 359–
360.

[17] L. Guo, E. Tan, S. Chen, Z. Xiao, X. Zhang, The stretched exponential
distribution of internet media access patterns, in: PODC, 2008, pp.
283–294.

[18] O. Heckmann, M. Piringer, J. Schmitt, R. Steinmetz, On realistic
network topologies for simulation, in: ACM SIGCOMM MoMeTools,
ACM Press, 2003, pp. 28–32.

[19] D.E. Knuth, The Art of Computer Programming, Seminumerical
Algorithms, third ed., vol. 2, Addison-Wesley, 1997.

[20] N. Laoutaris, H. Che, I. Stavrakakis, The LCD interconnection of LRU
caches and its analysis, Perform. Eval. 63 (7) (2006) 609–634.

[21] N. Laoutaris, G. Smaragdakis, A. Bestavros, I. Matta, I. Stavrakakis,
Distributed selfish caching, IEEE Trans. Parall. Distrib. Syst. 18 (10)
(2007) 1361–1376.

http://refhub.elsevier.com/S1389-1286(13)00281-8/h0005
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0005
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0010
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0010
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0010
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0015
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0015
http://www.ccnx.org/releases/latest/doc/technical/CCNxProtocol.html
http://www.ccnx.org/releases/latest/doc/technical/CCNxProtocol.html
http://https://code.renci.org/gf/project/choicenet/
http://https://code.renci.org/gf/project/choicenet/
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0020
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0020
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0020
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0025
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0025
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0025
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0030
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0030
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0030
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0035
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0035
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0040
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0040
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0040

M. Conti et al. / Computer Networks 57 (2013) 3178–3191 3191
[22] MobilityFirst FIA Overview, Retr. January 2013. <http://
mobilityfirst.winlab.rutgers.edu>.

[23] Named Data Networking (NDN), Retr. January 2013. <http://named-
data.net>.

[24] Nebula, Retr. January 2013. <http://nebula.cis.upenn.edu>.
[25] ns-3, Retr. January 2013. <http://www.nsnam.org>.
[26] M. Olschowka, A. Neumaier, A new pivoting strategy for Gaussian

elimination, Linear Algebra Appl. (240) (1996) 131–151.
[27] H. Park, I. Widjaja, H. Lee, Detection of cache pollution attacks using

randomness checks, in: ICC, IEEE, 2012, pp. 1096–1100.
[28] S. Podlipnig, L. Böszörmenyi, A survey of web cache replacement

strategies, ACM Comput. Surveys (CSUR) 35 (4) (2003) 374–398.
[29] S. Son, V. Shmatikov, The hitchhiker’s guide to DNS cache poisoning,

in: SecureComm, 2010, pp. 466–483.
[30] Squid Web Caching Proxy. <http://www.squid-cache.org/>.
[31] E.W. Weisstein, Logistic Equation, Retr. on January 2013. <http://

mathworld.wolfram.com/LogisticEquation.html>.
[32] XIA – eXpressive Internet Architecture, Retr. January 2013. <http://

www.cs.cmu.edu/xia/>.
[33] M. Xie, I. Widjaja, H. Wang, Enhancing cache robustness for content-

centric networks, in: INFOCOM, 2012.
[34] G. Zipf, In Human Behaviour and the Principle of Least-Effort,

Addison-Wesley, 1949.

Mauro Conti received the Ph.D. degree from
Sapienza University of Rome, Italy, in 2009. In
2008, he was a Visiting Researcher at the
Center for Secure Information Systems,
George Mason University, Fairfax, VA, USA.
After earning his Ph.D. degree, he was a
Postdoctoral Researcher at Vrije Universiteit
Amsterdam, The Netherlands. From 2011, he
is an Assistant Professor at the University of
Padua, Italy. In 2012, he was a Visiting Assis-
tant Professor at the University of California,
Irvine, CA, USA. His main research interest is

in the area of security and privacy. In this area, he has published more
than 60 papers in international peer-reviewed journals and conferences.
Dr. Conti was a Panelist at ACM CODASPY 2011. He served as program
committee member of several conferences, and he is General Chair for
SecureComm 2012 and ACM SACMAT 2013. In 2012, he has been awarded
by the European Commission with a Marie Curie Fellowship.

Paolo Gasti is an Assistant Professor of Com-
puter Science at the School of Engineering and
Computing Sciences at New York Institute of
Technology. His research focuses on privacy-
preserving genomic computation, biometrics,
secure multi-party protocols and network
security. Prof. Gasti served as a member of the
NDN project, which is an NSF-sponsored
endeavor with the goal of designing a new
Internet architecture. His work has been fea-
tured in articles by the New Scientist and MIT
Technology review.

Prof. Gasti worked as a research scholar at University of California, Irvine.
He received a Fulbright scholarship, under which he visited Johns Hop-
kins University. He received his Ph.D. in Computer Science from Univer-

sity of Genoa, Italy when his research pertained to the design of
cryptographic schemes and network security.

Marco Teoli has received his M.S. degree in
Computer Science at the University of Padua,
Italy, in 2013. His research interests include
network performance and security.

http://mobilityfirst.winlab.rutgers.edu
http://mobilityfirst.winlab.rutgers.edu
http://named-data.net
http://named-data.net
http://nebula.cis.upenn.edu
http://www.nsnam.org
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0045
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0045
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0050
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0050
http://www.squid-cache.org/
http://mathworld.wolfram.com/LogisticEquation.html
http://mathworld.wolfram.com/LogisticEquation.html
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0055
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0055
http://refhub.elsevier.com/S1389-1286(13)00281-8/h0055

	A lightweight mechanism for detection of cache pollution attacks in Named Data Networking
	1 Introduction
	2 NDN overview
	3 Related work
	3.1 CacheShield

	4 Threat model and attack strategy
	5 Evaluation environment
	6 Effects of cache pollution attacks
	7 Detection of cache pollution attack
	7.1 Sampling interests distribution
	7.2 Algorithm description
	7.3 Evaluation

	8 Conclusion
	Acknowledgments
	References

