
2556 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 11, NOVEMBER 2016

Secure, Fast, and Energy-Efficient Outsourced
Authentication for Smartphones

Paolo Gasti, Member, IEEE, Jaroslav Šeděnka, Qing Yang, Gang Zhou, Senior Member, IEEE,
and Kiran S. Balagani, Member, IEEE

Abstract— Common smartphone authentication mechanisms
(e.g., PINs, graphical passwords, and fingerprint scans) are not
designed to offer security post-login. Multi-modal continuous
authentication addresses this issue by frequently and unobtru-
sively authenticating the user via behavioral biometric signals,
such as touchscreen interaction and hand movements. Because
smartphones can easily fall into the hands of the adversary, it
is critical that the behavioral biometric information collected
and processed on these devices is secured. This can be done by
offloading encrypted template information to a remote server, and
then performing authentication via privacy-preserving protocols.
In this paper, we demonstrate that the energy overhead of current
privacy-preserving protocols for continuous authentication is
unsustainable on smartphones. To reduce energy consumption,
we design a technique that leverages characteristics unique to the
authentication setting in order to securely outsource computation
to an untrusted Cloud. Our approach is secure against a colluding
smartphone and Cloud, thus making it well suited for authentica-
tion. We performed extensive experimental evaluation. With our
technique, the energy requirement for running an authentication
instance that computes Manhattan distance is 0.2 mWh, which
corresponds to a negligible fraction of the smartphone’s battery
capacity. In addition, for Manhattan distance, our protocol runs
in 0.72 and 2 s for 8 and 28 biometric features, respectively. We
were also able to compute Hamming distance in 3.29 s, compared
with 95.57 s achieved with the previous fastest outsourced
computation protocol (Whitewash). These results demonstrate
that ours is presently the only technique suitable for low-latency
continuous authentication (e.g., with authentication scan windows
of 60 s or shorter).

Index Terms— Privacy, cryptographic protocols, authentica-
tion, energy efficiency.

I. INTRODUCTION

THE need for usable, reliable, and secure smartphone user
authentication mechanisms is increasing because smart-

phones routinely access, generate, store, and process users’
private information, and because portability and mobility of

Manuscript received March 8, 2016; revised May 12, 2016 and June 14,
2016; accepted June 14, 2016. Date of publication June 24, 2016; date
of current version September 1, 2016. This work was supported by the
2015 New York Institute of Technology through the Institutional Support for
Research and Creativity Program. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Sheng Zhong.
(Corresponding author: Kiran S. Balagani.)

P. Gasti and K. S. Balagani are with the New York Institute of Technology,
New York, NY 10023 USA (e-mail: pgasti@nyit.edu; kbalagan@nyit.edu).

J. Šeděnka is with Masaryk University, Brno 601 77, Czech Republic
(e-mail: sedenka@mail.muni.cz).

Q. Yang and G. Zhou are with the College of William & Mary, Williams-
burg, VA 23185 USA (e-mail: qyang@cs.wm.edu; gzhou@cs.wm.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2016.2585093

smartphones intrinsically increases risks of theft and loss.
Common smartphone authentication mechanisms offer limited
security—simple PINs are easy to guess [11], while strong
alphanumeric passwords and swipe patterns are susceptible
to attacks from reflections [48], video capture [45], and
smudges [2]. Another fundamental limitation of these mecha-
nisms is that they are designed for login-time authentication,
and offer no protection against theft or coercion post-login.
Although, in principle, it is possible to repeatedly activate
the above mechanisms beyond login point, each activation
could potentially distract the user, thereby raising usability
concerns.

Continuous (or active) authentication mechanisms aim to
address post-login authentication by frequently and unobtru-
sively verifying the user’s identity via behavioral biometric
signals, such as touchscreen interaction [12], hand movements
and gait [46], voice [29], and phone location [44]. However,
authenticating smartphone users via behavioral biometric sig-
nals raises security and privacy concerns. These signals carry
personal identifiable data (who is the user?), and expose user
information and behavior (what app is the user accessing?
what is the user saying? what is the user’s location?).

Because smartphones can easily fall into the hands of
the adversary, it is critical that behavioral biometric signals
collected or stored on these devices are secured. Traditionally,
biometric signals have been secured using one of the following
two approaches: (1) on-device, in which a transformed version
of the template is stored on the smartphone, either using
cancelable biometrics [39] or fuzzy commitments [19]; and
(2) off-device, in which the smartphone authenticates to a
remote server [46], [47], thereby not storing the template or
any biometric information on the device.

At first blush, on-device approaches sound appealing for
smartphones because they require limited computation, and
no communication with external parties. However, the assump-
tions on which these approaches base their security guarantees
are not compatible with smartphones. Cancelable biometrics
assume that the transformation applied to the biometric is
secret—which is questionable when the adversary can obtain
physical access to the smartphone through theft, loss, or
coercion. When this assumption fails, these techniques are sus-
ceptible to simple correlation and impersonation attacks [33].
Further, cancelable biometrics and fuzzy commitments assume
that the underlying biometric has high guessing entropy [4],
which is not true in practice [3], [30], [31].

1556-6013 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

GASTI et al.: SECURE, FAST, AND ENERGY-EFFICIENT OUTSOURCED AUTHENTICATION FOR SMARTPHONES 2557

Off-device approaches sidestep these problems by not hav-
ing to store biometric information on the smartphone. Match-
ing is performed on a remote server, which can additionally
implement rate-limiting to mitigate the effects of low guessing
entropy. However, in off-device approaches, the server must
have access to the biometric template and to the authentication
signal in order to authenticate the user. This raises numer-
ous privacy and security issues [18]. The standard way to
address these issues is to use a privacy-preserving protocol
(e.g., [6], [34]). The inputs to the protocol are the template
from the server and a biometric sample from the smartphone.
The output is the distance (or the similarity) between the two
inputs. Privacy-preserving protocols faithfully (without loss of
accuracy) implement the biometric computation, and provably
guarantee that no additional information is revealed to the
server or the smartphone.

Privacy-preserving protocols for authentication must pro-
vide provable security against malicious parties, i.e., both
server and smartphone can arbitrarily deviate from the correct
execution of the protocol. In this setting, our experiments
(presented in Section IX) show that privacy-preserving authen-
tication adds substantial energy overhead to the authentication
pipeline, when implemented using standard protocol construc-
tion techniques. In our case, each privacy-preserving authen-
tication attempt (implementing Manhattan distance matching)
consumed 275 mWh using garbled circuits [49] with cut-and-
choose [16]. At this rate, the battery of a commodity Android
smartphone—a Samsung Galaxy S4, in our experiments—can
sustain about 35 authentication attempts before being depleted.
This means that if the user is authenticated every 60 seconds,
the smartphone will run out of battery in approximately
half hour, which is clearly unacceptable. In comparison, the
energy overhead of continuously collecting behavioral signals
for authentication is negligible: accelerometer and gyroscope
accounted for a mere 1.6 mWh for 60-second scans, while
extracting touchscreen-based features of [12] and [41] used
0.1 mWh. Thus, to make secure privacy-preserving active
authentication viable on smartphones, we need new energy-
efficient protocol construction techniques.

A. Contributions

In this paper, we present a new protocol construction
technique for reducing energy cost, computation, and com-
munication of privacy-preserving protocols for active authen-
tication on smartphones. Our design offloads most of the
smartphone computation to an untrusted outsourcing party (the
Cloud), such as Amazon S3 or Microsoft Azure. This leads
to both substantial energy savings for the smartphone, and
to a dramatic reduction of protocol execution time. Although
both garbled circuits and offloading of computation are known
techniques, this work brings them together and enhances them
in a novel way that results in over 30-fold decrease in protocol
execution cost. To our knowledge, this is the first work that
implements garbled circuits secure against malicious parties
and does not use cut-and-choose.

In order to measure the performance and power con-
sumption of our approach, we implement our protocol on

an Android smartphone. Our technique reduces the energy
consumption for computation of Manhattan distance to less
than 0.2 mWh, and thus has negligible impact on the smart-
phone’s battery life. Our protocol is substantially faster than
the state-of-the-art Cloud-aided computation techniques such
as Whitewash [8]. For instance, computing the Hamming
distance on 1600-bit vectors takes 3.29s with our approach
in comparison to 95.57s with Whitewash.

We provide formal proof of security of our construction.
Our protocol guarantees privacy (i.e., the parties cannot learn
more than what can be inferred from their input and from the
protocol’s output, regardless of their behavior), and correctness
(the protocol either produces a correct output, or it produces no
output). To further strengthen the privacy of our approach, the
user’s biometric template is stored on the server in encrypted
form, and the server has no accesses to the decryption
key.

Our protocol is secure against a malicious Cloud, even when
it colludes with the smartphone. This is important because the
Cloud is used to reduce protocol overhead for the smartphone,
and is therefore assumed to be paid for and controlled by
the party in possession of the smartphone. Therefore, any
protocol that assumes non-collusion between the Cloud and
the smartphone is potentially vulnerable to attacks.

B. Organization

We start by presenting the related work in Section II.
We review the cryptographic tools used in our construction
in Section III. Our system and security models are defined
in Section IV. We discuss our approach in Section V, and
present a detailed protocol description in Section VI. Formal
security proofs of our protocol are presented in Section VII.
We compare our protocol to current techniques in Section VIII.
Energy, bandwidth, and execution time of our approach are
evaluated in Section IX. We conclude in Section X.

II. BACKGROUND AND RELATED WORK

A. Garbled Circuits

Since the seminal work on garbled circuit evaluation [49],
it has been shown that any function can be securely evaluated
by representing it as a boolean circuit. Similar results exist
for secure evaluation of any function using secret sharing
techniques [37], or homomorphic encryption [10].

Recent literature provides optimizations that reduce com-
putation and communication overhead associated with circuit
construction and evaluation. Kolesnikov and Schneider [24]
describe a modification that permits XOR gates to be eval-
uated for free, i.e., there is no communication overhead
associated with XOR gates, and their evaluation does not
involve cryptographic functions. Pinkas et al. [35] addition-
ally give a mechanism for reducing communication complex-
ity of binary gates by 25%. Their work allows each gate
to be specified by encoding only three outcomes instead
of four. Finally, Kolesnikov et al. [23] improve the complex-
ity of certain commonly used operations such as addition,
multiplication, and comparison, by reducing the number of
non-XOR gates.

2558 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 11, NOVEMBER 2016

Zahur et al. [50] introduce a technique that allows them
to encode AND gates using only two ciphertexts, while still
allowing the use of free-XOR [24]. While the size of the
resulting garbled circuit decreases by up to 33%, the use of
this technique leads to doubling the amount of computation
required to evaluate each AND gate. The authors show that
this technique leads to a reduction in energy consumption on
a desktop computer. However, it is not clear if this translates
to a similar reduction on a smartphone device.

Garbled circuits offer security in the semi-honest model.
However, a technique called cut-and-choose [16] can be used
to construct protocols based on garbled circuits, secure in the
malicious model. With cut-and-choose, the circuit constructor
creates multiple garblings of a circuit. The circuit evaluator
randomly selects a subset of these garblings, and asks the
server to reveal these circuits’ input keys. The circuit evaluator
verifies that all circuits are constructed properly, and evaluates
the remaining circuits to obtain the result of the computation.
Then, both parties switch roles and repeat this process. There
are several approaches to implement cut-and-choose, each
requiring a different number of circuits to achieve a given
level of security (see, e.g., [16], [17], [27], [26]).

Lindell and Riva [28] show that it is possible to reduce
the cost of cut-and-choose by evaluating multiple circuits in
batch. In order to have a probability of undetected errors
of 2−40, their technique requires an average of 7.06 circuits
when performing 210 evaluations of the same circuit. This is
a substantial improvement compared to [26], which requires
40 circuits to achieve the same level of security. Unfortu-
nately, batching cannot be leveraged with active authentication
because, for each user, thousands of authentication attempts
never occur at once.

Another approach to privacy-preserving computation is fully
homomorphic encryption (FHE), first constructed by Gen-
try [13]. FHE allows computation of arbitrary ring oper-
ations in the encrypted domain. Despite advancements in
FHE, current implementations are still far too expensive for
smartphones (see, for example, [14], [36]).

B. Outsourced Computation

Outsourcing computation to an untrusted third party, such
as the Cloud, is an effective way to reduce the computation
load of one or more protocol participants. This approach is
often referred to as Cloud/server-aided computation, or server-
assisted cryptography [5]. There exist Cloud-aided protocols
designed for specific functionalities (e.g., server-aided private
set intersection [20]), as well as generic protocols, which
offer security in the presence of malicious adversaries [8], [9],
[21]. Next, we provide an overview of three such Cloud-aided
protocols that are closely related to our work.

Kamara et al. [21] introduce Salus, a system which includes
two server-aided secure function evaluation protocols. Salus
efficiently supports an arbitrary number of protocol partic-
ipants, and is designed to trade computation for communi-
cation. In particular, the authors assume that the participants
have access to large bandwidth capabilities. This is clearly not
the case for smartphones, for which high-bandwidth wireless

communication translates to high energy costs. In addition,
Salus uses a fair coin tossing protocol to allow the partic-
ipants to share a random secret key. This further increases
communication overhead between the parties. Finally, Salus
is secure against malicious server, smartphone, and Cloud, but
only as long as at most one party at a time is malicious. This
prevents two parties (e.g., the smartphone and the Cloud) to
work together against the third (the server), and is therefore
known as non-collusion assumption.

Carter et al. [9] developed an outsourcing protocol based on
the garbled circuit protocol of Kreuter et al. [25]. Similar to
Salus, their protocol relies on the Cloud for evaluating garbled
circuit. The protocol of Carter et al. is based on outsourced
oblivious transfer, which is used to send circuit input labels
to the Cloud. Because of lower bandwidth requirements com-
pared to Salus, the protocol is well suited for mobile devices.
However, as with Salus, the overall execution time of [9] is
still prohibitively long. Moreover, the protocol is secure in the
same adversary model as Salus, i.e., it assumes that the parties
do not collude.

More recently, Carter et al. [8] introduced Whitewash,
a novel secure function evaluation protocol. In contrast to
previous work, Whitewash reverses the roles of the parties.
In particular, the Cloud is in charge of generating the garbled
circuit, while the smartphone simply garbles its own input.
Circuit evaluation is performed by the server. The result of
this modification is a protocol that is more efficient than
previous work, in terms of both execution time and bandwidth.
Moreover, Whitewash does not rely on the non-collusion
assumption. In fact, it is secure when a malicious smartphone
and a malicious Cloud collude—in which case, the security
of the protocol is the same as the underlying garbled circuit
technique, which is based on Shelat and Shen’s protocol [42].
However, because the protocol is based on cut-and-choose,
the execution time is very high, even for relatively simple
functionalities.

III. CRYPTOGRAPHIC PRELIMINARIES

A. Garbled Circuit Evaluation

Garbled circuits allow two parties (a circuit constructor,
and a circuit evaluator) to securely evaluate any function
represented as a boolean circuit. Let κ be the security para-
meter. Given a circuit composed of gates connected by wires,
the circuit constructor “garbles” the circuit by assigning two
randomly chosen encryption keys of length κ , denoted as ω j,0
and ω j,1, to each wire j . These keys represent, respectively,
0 and 1. (In the garbled circuits literature, keys are usually
referred to as labels.) The circuit constructor encrypts each
entry of the truth table corresponding to each gate. Values in
the truth table are also represented using labels, and each label
is encrypted with two keys, ω j,b j and ωl,bl , corresponding to
the values on the gate’s input wires. Therefore, computing the
output label of each gate requires knowing two of its input
labels, one for each input wire of the gate.

The output of the circuit is encoded in its output labels,
constructed and interpreted as follows. Let ωi,b be the label of
output wire i corresponding to output bit b, and s the number

GASTI et al.: SECURE, FAST, AND ENERGY-EFFICIENT OUTSOURCED AUTHENTICATION FOR SMARTPHONES 2559

of output wires. The circuit constructor selects a pair of ran-
dom labels ωi,0, ωi,1 for each output wire i , 1 ≤ i ≤ �. Then, it
builds a table T = ((ω1,0, ω1,1), (ω2,0, ω2,1), . . . , (ωs,0, ω�,1))
and sends it to the circuit evaluator as part of the circuit.
The circuit evaluator uses T to interpret the output of the
circuit: at the end of the circuit evaluation, it learns � labels
w1,b1, . . . , w�,b� , and determines their bit value by comparing
them with the values in T .

In this paper, we build on the modified garbled circuit
construction of Šeděnka et al. [47]. The construction differs
from “traditional” garbled circuit evaluation in three ways:
(1) output labels are selected independently, even when they
are computed as the output of XOR gates; (2) T is not revealed
to the circuit evaluator; and (3) the circuit constructor aborts
if any of the label returned by the evaluator is not in T , if
not all labels are returned, or if two labels for the same bit
are returned. These modifications guarantee that the resulting
protocol is secure against a malicious evaluator, which is
unable to alter the result of the circuit computation.

B. Oblivious Transfer

In order to learn the labels corresponding to its input wires,
the circuit evaluator executes several instances of 1-out-of-2
oblivious transfer (OT) protocols with the circuit constructor.
In 1-out-of-2 Oblivious Transfer (OT2

1), one party (the sender)
has two strings m0, m1, and the other party (the receiver) has
one bit (b) as its input. At the end of the protocol, the receiver
learns mb while the sender learns nothing. Similarly, in 1-out-
of-N OT the receiver obtains one of the N strings held by the
sender.

IV. MODEL AND DEFINITIONS

A. Protocol Participants and Interactions

Our protocol involves three parties: the smartphone (owned
by the user), the Cloud, and the server. The parties interact in
two protocol phases: enrollment (typically executed once per
user), and authentication. During enrollment, the smartphone
collects and processes a user’s biometric template Y . Then,
it encrypts Y and sends the resulting vector Y to the server.
The server has no access to the template decryption key, and is
therefore unable to extract any information about the template.
The Cloud does not take part in the enrollment phase.

During the authentication phase, the smartphone and the
server interact with the Cloud in order to execute the protocol.
The smartphone’s protocol input is a biometric vector X
containing biometric features, and the template decryption key.
The server’s input is the user’s encrypted template Y . The
server’s output is the authentication score. The smartphone
has no output, and the Cloud has no input or output.

During the execution of the protocol, the server learns no
information about the user’s biometric template and authen-
tication sample. Similarly, the Cloud learns no information
about any of the other parties’ input or output.

Our approach assumes that the smartphone has Internet
connectivity, which is a common expectation of modern smart-
phone operating systems and apps. If the adversary attempts to
circumvent the proposed architecture by interrupting network

connectivity during authentication, the smartphone can fall
back to offline access control policies, such as activating login-
time password, or disabling access to local data. We consider
offline policies to be outside the scope of this work.

B. Security Model

Many privacy-preserving protocols and protocol construc-
tion techniques are secure against semi-honest (or honest-
but-curious) adversaries. Informally, semi-honest adversaries
faithfully execute all protocol steps, and try to learn additional
information from the transcripts of the protocol execution. This
setting is appropriate when the parties can be safely assumed
to behave properly, e.g., when the execution of the protocol
can be audited, or when the parties have strong external
incentives to not have access to any information besides the
protocol output. In contrast to semi-honest parties, malicious
adversaries are assumed to deviate from the intended protocol
execution, and are therefore much more powerful than semi-
honest adversaries.

We argue that, in the context of authentication performed
on user-controlled devices, security against semi-honest adver-
saries is not sufficient. The adversary should, in fact, be
assumed to be willing (and able) to arbitrarily deviate from
the protocol if this provides any advantage when performing
authentication. For example, if the adversary can successfully
authenticate without knowledge of the authentication secret by
sending maliciously crafted messages, then we must consider
this a viable adversarial strategy. If a protocol is secure against
malicious adversaries, then attacks that rely on deviating from
the protocol are ineffective: security in the malicious model
implies that all parties will either receive the correct output
with respect to all participants’ input, or receive no output.

Because our scenario involves three parties (the smartphone,
the Cloud, and the server), we must assume that any two of
them can collude. Next, we comment on the validity of each
of the collusion scenario.

We envision that the smartphone will have some level
of control over the Cloud (possibly because the Cloud is a
laptop or a virtual machine owned by the user), and therefore
security against colluding Cloud and smartphone is a natural
requirement.

Collusion of server and smartphone is not meaningful
because the Cloud has no input and no output in the protocol.

Finally, the Cloud and the server might collude. Our model
does not consider this scenario. It is still an open problem
whether collusion between the Cloud and the server can be
addressed efficiently, and without the use of fully homomor-
phic encryption [21]. However, we believe that assuming non-
collusion between these two parties is reasonable: our protocol
imposes no restrictions on where the Cloud should be hosted,
and it is therefore safe to assume that the user will choose a
hosting facility that is not under the server’s control.

Our model assumes that the smartphone is not compromised
while it is in the hands of its legitimate user. This means
that, for example, the smartphone is not running malicious
software while the legitimate user is enrolling or authenti-
cating. We model this by providing all decryption keys and

2560 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 11, NOVEMBER 2016

signing keys stored on the smartphone to the adversary post-
enrollment, and by not explicitly disclosing the user’s biomet-
ric template to the adversary. This assumption is required not
only by our approach, but by any authentication mechanism: if
the adversary is able to run arbitrary code on the user’s device
during enrollment or authentication then it can, for example,
capture all passwords, keystrokes, and behavioral biometric
traits. This information could then be used to impersonate the
user (see, e.g., [38], [40]).

C. Security Definitions

We follow the security definitions of Carter et al. [8] and
Kamara et al. [21], which are based on the ideal world/real
world paradigm [15]. In the ideal world, there are three proto-
col participants, denoted as P1, P2, and P3, who interact with
a trusted third party (TTP). The TTP is in charge of evaluating
function f on the participants’ input. At the beginning of the
protocol execution, all parties receive their input. One party,
which represents the Cloud, has no input, and receives no
output from the TTP. Each protocol participant sends its inputs
to the trusted third party via secure channels. The trusted third
party then sends each protocol participant the respective output
on the same channels.

Some subset of these parties, indicated as {Ai }i≤3 are
corrupted, and can deviate arbitrarily from the protocol. For all
parties, let OU Ti be the output of Pi . The i -th partial output
of an ideal protocol execution with input X is defined as:

IDEAL(i)(κ, X; r) � {OU Tj : j ∈ H } ∪ OU Ti

where H is the set of honest parties, r is all random coins of
all participants, and κ is the security parameter.

In the real world, each party provides the same inputs
as in the ideal world, and is additionally given access to
random coins. For the i -th party, let OU Ti be its output.
Then, the i -th partial output of an ideal protocol execution
in the presence of m ≤ 3 independent malicious simulators
S = (Sim1, Sim2, Sim3) is defined as:

REAL(i)(κ, X; r) � {OU Tj : j ∈ H } ∪ OU Ti

where H , r , and κ are defined as before. Given this model,
security is formally defined as:

Definition 1: An outsourced protocol securely computes the
function f if there exists a set of probabilistic polynomial-time
simulators {Sim1, Sim2, Sim3} such that for all probabilistic
polynomial time adversaries (A1, A2, A3), inputs X , auxiliary
inputs, and for all i ∈ {1, 2, 3}:

{REAL(i)(κ, X; r)} c≡ {IDEAL(i)(κ, X; r)}
where Simi is the simulator for Ai , and r is uniformly random.

V. OUR APPROACH

The goal of our protocol is to minimize the amount of com-
putation performed by the smartphone, while also reducing the
protocol execution time. This is done by outsourcing almost
all the computation associated with garbled circuit evaluation
to an untrusted Cloud, and by removing cut-and-choose, while
guaranteeing security against malicious parties.

Our protocol does not rely on cut-and-choose because both
parties with input (i.e., the smartphone and the server) are
guaranteed to use a circuit that has been constructed correctly.
Similarly, if either the server or the smartphone are semi-
honest, then the Cloud is also guaranteed to be evaluating the
correct circuit. To achieve this, we use a strategy that, although
not applicable in general, is well suited for authentication.
In our protocol, the smartphone acts as circuit constructor, and
the Cloud as circuit evaluator. The server verifies the correct-
ness of the circuit. During enrollment, and after each success-
ful authentication, the smartphone constructs and signs a gar-
bled circuit that implements the verifier. The circuit, together
with its input keys, is sent to the server. The server decrypts all
gates and verifies circuit correctness. If at least one of the two
parties is semi-honest, the circuit to be evaluated is correct.
The smartphone then deletes all information related to the cir-
cuit. Evaluation of the circuit, including oblivious transfer, is
performed by the Cloud, which must prove to the smartphone
and to the server that it has faithfully followed the protocol.

A malicious (or even semi-honest) smartphone can decide
not to delete the circuit’s input keys after sending them to the
server. By retaining the input keys, the smartphone can recon-
struct the server’s input by comparing the server’s input labels
with the values generated during circuit construction. (This
requires collusion between the smartphone and the Cloud,
which is allowed in our model.) We argue that this is not
a problem for authentication. In fact, a malicious smartphone
can send a new circuit only after a successful authentication.
Successful authentication requires knowledge of a faithful rep-
resentation of the user’s template. Therefore, learning the value
of the template after successful authentication is arguably of no
use for a malicious smartphone. Similarly, one could assume
that when the smartphone is in the hands of its legitimate user,
it might decide not to delete circuit information, and later use
this information to authenticate without user action. However,
it can as well decide to maintain a copy of the user’s biometric
data post-authentication. This will render any authentication
protocol insecure, and therefore deletion of transient informa-
tion after login is a common implicit assumption.

Because our protocol does not rely on cut-and-choose, its
execution time, power consumption, and design complexity
are significantly lower than with current outsourcing
techniques [8], [9], [21]. This simplification allows us to
offload the oblivious transfer and the circuit evaluation to
the Cloud and the server, except for a small number of
inexpensive checks that the smartphone performs during
protocol execution.

As confirmed by our experiments, circuit construction on the
smartphone is inexpensive for even relatively complex func-
tions. Moreover, the smartphone can construct the garbled cir-
cuit offline (e.g., overnight while charging). This optimization
further reduces computation and communication performed
by the smartphone during protocol execution, bringing the
smartphone’s energy consumption to a negligible level.

A. Protocol Overview

In this section, we describe a simplified version of the
enrollment and authentication phases of our protocol, and

GASTI et al.: SECURE, FAST, AND ENERGY-EFFICIENT OUTSOURCED AUTHENTICATION FOR SMARTPHONES 2561

Fig. 1. High-level overview of the authentication circuit.

discuss the protocol design rationale. Detailed protocol
description is presented in Section VI.

1) Enrollment Phase: During enrollment, the smartphone
collects a set of biometric samples from the user, and uses
them to construct the template Y . Each feature of the template
is then encrypted by adding a random vector R of appropriate
length to Y . R is then stored on the smartphone. Let Y be the
resulting encrypted template, i.e., Y = Y+ R. The smartphone
then constructs a set of garbled circuits that implement the
authentication function, and signs them using the user’s private
key. Let n be the number of biometric features used for
authentication, and v the bit-length of the features. In order
to later allow the smartphone to verify the correctness of the
circuit’s input, each circuit is augmented with n · v output
wires, which are connected directly to the smartphone’s input
wires. In other words, these output wires correspond to the
output of the identity function computed on the smartphone’s
input (indicated as “verification circuit” in Figure 1). Finally,
the circuits are sent to the server, together with all the circuits’
decryption keys. The server verifies the correctness of the
circuits, and stores them. At the end of the enrollment process,
the smartphone deletes all information, except for R and the
user’s private (signing) key.

2) Authentication Phase: The steps performed during
authentication are depicted in Figure 2, and can be summarized
as follows. The server sends one signed circuit to the Cloud.
The Cloud verifies the signature, and aborts if the verification
fails.

The smartphone collects a biometric sample, constructs an
authentication vector X , and encrypts it by adding R to it. Let
X be the resulting ciphertext, i.e., X = X+R. The smartphone
sends Z to the server, and X ⊕ Z to the Cloud. Neither
the Cloud nor the server can reconstruct the smartphone’s
input, because Z carries no information on X , and X ⊕ Z
is effectively a one-time pad encryption of X .

The Cloud then engages in an instance of OT with the
server, in which it acts as receiver, while the server acts as
sender. The Cloud uses X⊕Z as its input for the OT protocol,
while the server’s input is composed of the circuit’s input
labels. However, for each bit set to 1 in Z , the server swaps
the label corresponding to 0 with the label corresponding
to 1. This way, the server effectively “removes” Z from
X ⊕ Z via OT, and therefore the Cloud learns the input keys
corresponding to X .

As soon as the server sends the input labels corresponding
to Y to the Cloud, the Cloud has access to all the informa-
tion needed to evaluate the garbled circuit. The Cloud first

Fig. 2. Overview of our outsourced authentication protocol.

computes the output labels of the verification circuit, and
sends their hash to the smartphone. At the same time, the
server sends all verification labels to the smartphone, together
with the corresponding signature generated by the smartphone
during enrollment. The smartphone computes the hash of the
verification labels from the server corresponding to X , and ver-
ifies that it matches with the hash received from the Cloud. The
verification result is reported to both the Cloud and the server.

At this stage, the Cloud evaluates the rest of the circuit
(i.e., the Distance function circuit in Figure 1). At the end of
the evaluation, the Cloud releases the output of the distance
function sub-circuit (but not the verification labels) to the
server, which is now able to determine the distance between
Y and X . In fact, the distance between X and Y is the same as
the distance between Y and X . If the distance is below a pre-
define threshold, the server accepts the user’s identity claim
and requests one or more signed circuits from the smartphone.

3) Design Rationale: The verification gates guarantee that
neither the server nor the Cloud have tampered with the
smartphone’s input during the protocol. Without these gates,
a malicious Cloud could undetectably flip any of the bits of
X⊕ Z , therefore altering one or more bits of X . Similarly, the
server could flip any bit of Z , leading to the same outcome.

The same input values are used as input to the distance
function sub-circuit and to the verification sub-circuit (i.e., the

2562 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 11, NOVEMBER 2016

TABLE I

SYMBOLS USED IN THIS PAPER

identity circuit). A valid signature on the circuit guarantees
to the Cloud that both sub-circuits are correct, because an
honest smartphone would construct a correct circuit, and an
honest server would not accept an incorrect circuit. Therefore,
a correct output of the verification circuits guarantees that the
values of the input gates faithfully represent the smartphone’s
input, either because the Cloud and the server followed the
protocol, or because they independently flipped the same bits
in Z and X ⊕ Z—which also leads to a correct protocol
execution.

Although it might look like the same result could be
obtained by removing the identity circuit and simply compar-
ing the circuit’s input with the expected input labels, this would
not lead to a secure construction. In fact, doing so requires the
smartphone to keep a copy of all input labels corresponding
to its input. This allows colluding Cloud and smartphone to
evaluate the circuit multiple times using different input values,
without any interaction with the server. This will likely lead to
the disclosure of a significant portion of the server’s input bits.
Instead, with our approach, the smartphone does not learn any
of the input gates, and learning the output of the verification
gates is not useful towards the evaluation of the circuit on
different inputs.

From the energy standpoint, sending information via WiFi
or cellular is expensive. In order to minimize energy consump-
tion, in our protocol the smartphone sends a small seed s (e.g.,
s ← {0, 1}κ) to the server, instead of the entire circuit. The
seed is then used by the server to deterministically generate
the garbled circuit, thus reducing communication overhead.

VI. PROTOCOL DESCRIPTION

The notation used in the rest of the paper is summarized
in Table I. We refer to the output labels of the identity sub-
circuit, depicted in Figure 1, as “verification labels”. A garbled
circuit Ciri , together with all its input and output labels, is
constructed via a deterministic algorithm that takes in input
the circuit’s topology and a seed si , with |si | = κ . Therefore,
two parties can construct identical garbled circuits, including
all input and output labels, given the same circuit topology
and si .

A. Enrollment Phase

Common Inputs: Security parameter κ , user’s public key
pku , n, v, function description f (X, Y), m.

Private Inputs: Smartphone: Y , user’s signing key sku ;
server and Cloud: none.

Outputs: Server: Y ; smartphone and Cloud: none.
During enrollment, the smartphone selects a set of m

short seeds s1, . . . , sm . Each si is used to construct garbled
circuit Ciri , 1 ≤ i ≤ m. Each circuit implements the same
distance function (e.g., scaled Manhattan distance, or any other
translation-invariant metric), and is signed using the user’s
signing key sku . In particular, the smartphone signs the garbled
representation of the circuit (without including input and
output keys) as δ1, . . . , δm . It also signs all tables T 1

2 , . . . , T m
2

(i.e., the table which associates verification output labels with
their meaning) as γ1, . . . , γm . Signatures δi -s and γi -s are
sent to the server, together with s1, . . . , sm . The smartphone
immediately discards all the information about the circuits
(i.e., it deletes all si -s, input keys, output wires, garbled
gates values, and intermediate keys). After receiving si -s and
δi -s, the server constructs Cir1, . . . , Cirm and verifies the
signatures computed on the circuits using the user’s public
key pku . If the verification is successful, the server accepts the
circuits. After constructing a feature vector Y = (yi , . . . , yn)
representing the user’s template, the smartphone selects n
independent random values ri such that 0 ≤ ri ≤ 2v for
some v that represents the length of the features. It then sends
Y = ((y1 + r1 mod 2v), . . . , (yn + rn mod 2v)) to the server.
The smartphone stores R = (r1, . . . , rn) locally, and deletes
Y and Y .

B. Authentication Phase

Common Inputs: Security parameter κ , user’s public key
pku , n, v, function description f (X, Y), m.

Private Inputs: Smartphone: X , R, user’s signing key sku ;
server: Y , {(Ciri , δi , γi)}i∈[1,m]; Cloud: none.

Outputs: Server: f (X, Y); smartphone and Cloud: none.
1) Authentication—Phase 1 (Setup and Oblivious Transfer):

The server selects (Cir, δ, γ) ∈ {(Ciri , δi , γi)}i∈[1,m], and
removes it from the set of available signed circuits. Then, it
sends (Cir, δ) to the Cloud. The Cloud verifies δ using the
smartphone’s public key. If the verification fails, the Cloud
aborts protocol execution and alerts the smartphone.

The smartphone computes X = X + R, selects n · v random
bits Z = (z1, . . . , zn·v), and computes X ⊕ Z as the bit-wise
XOR of z1, . . . , zn·v with X . The smartphone then sends X⊕Z
to the Cloud, and Z to the server. Because the Cloud does not

GASTI et al.: SECURE, FAST, AND ENERGY-EFFICIENT OUTSOURCED AUTHENTICATION FOR SMARTPHONES 2563

know any of the zi , it cannot extract any information from
X . Similarly, in this stage the server learns n · v random bits
(i.e., Z), which reveal no information about the smartphone’s
input.

The Cloud and the server engage in the OT protocol, where
the server acts as sender and the Cloud acts as receiver. The
Cloud’s input is X⊕ Z , while the server’s is the circuit’s input
labels. The server’s input, however, is modified as follows.
For each OT2

1, the inputs of the server are “swapped” if the
corresponding zi is 1. Let ωi,0 and ωi,1 be the labels for
the i -th input wire of the garbled circuit. If zi = 1, then
the values of ωi,0 and ωi,1 are swapped. This way, at the
end of the execution of the OT protocol, the Cloud learns
the input labels corresponding to X , rather than to X ⊕ Z .
However, because the labels are computed independently from
their corresponding bit value, the Cloud does not learn the
smartphone’s input. Finally, the server sends the input labels
corresponding to Y to the Cloud.

2) Authentication—Phase 2 (Input Verification): The Cloud
uses the circuit input labels obtained in the previous phase to
evaluate the verification sub-circuit. This amounts to decrypt-
ing the verification sub-circuit output gates using the input
labels as decryption keys. The output labels are then deter-
ministically encoded as a single string (e.g., via concatenation
as ω1,b1|| . . . ||ω(n·v),b(n·v)), which is hashed and sent to the
smartphone.

The server sends the table T2 corresponding
to Cir to the smartphone, together with γ . Let
T2 = ((ωver

1,0, ω
ver
1,1), . . . , (ω

ver
(n·v),0, ω

ver
(n·v),1)). The smartphone

verifies γ , then computes H(ωver
1,b1,
|| . . . ||ωver

(n·v),b(n·v)
) where

bi is the i -th bit of X , and compares it to the hash received
from the Cloud. If the two values are not equal, then the
smartphone aborts protocol execution. Otherwise, it notifies
the Cloud and the server that the verification completed
successfully.

3) Authentication—Phase 3 (Circuit Evaluation): The
Cloud evaluates the distance function sub-circuit of Cir (see
Figure 1), then sends the corresponding output labels (and
withholds the verification output labels) to the server. The
server checks that the values received from the Cloud are
correct by verifying that: (1) the Cloud returned exactly one
value per output wire; and (2) each value corresponds to one
of the output wire values. Then, the server interprets the output
labels to reconstruct the protocol output. The server makes an
authentication decision based on this output.

4) Authentication—Phase 4 (Post-Authentication Circuit
Generation): If the authentication is successful, the server
asks the smartphone to send one more signed garbled circuit.
Otherwise, the server rejects the smartphone, and possibly
repeats the authentication process with another circuit that has
not been evaluated before.

C. Protocol Correctness

In this section, we show that if all parties faithfully follow
all protocol steps, the protocol outputs the correct result. Cor-
rectness of the protocol in presence of malicious adversaries
is addressed in Section VII.

1) Enrollment Phase: During enrollment, the smartphone
generates m circuits using seeds s1, . . . , sm , and signs them
and the corresponding tables T 1

2 , . . . , T m
2 . Because generat-

ing garbled circuit representations and the tables from each
seed is a deterministic process, the server generates the
same circuit representations as the smartphone. Therefore
signatures δ1, . . . , δm and γ1, . . . , γm are valid.

2) Authentication Phase: During Setup and Oblivious
Transfer (Authentication—Phase 1), the Cloud uses X ⊕ Z
as its input to the OT protocol. The server’s input consists
in the circuit labels; for each zi = 1, the server swaps the
corresponding input labels as detailed in Section VI-B. In
particular, for each zi = 0, label ωi,bi corresponds to input
bit bi , and for each zi = 1, label ωi,bi corresponds to input
bit 1 − bi . In other words, the label associated by the server
to bit bi is ωi,(bi⊕zi). For each zi = 0, the Cloud requests
ωi,bi -s corresponding to X ⊕ Z to the server via OT. The
i -th bit of X ⊕ Z is the XOR of zi with bit bi of X , and
therefore, the Cloud effectively requests labels corresponding
to bi ⊕ zi to the server via OT. Hence, the Cloud receives
labels ωi,(bi⊕zi)⊕zi = ωi,bi , and at the end of the protocol the
Cloud learns the input labels corresponding to X .

During the input verification phase (Authentication—
Phase 2), the hash value received by the smartphone from
the Cloud is equal to the hash of the verification sub-circuit’s
output labels corresponding to X , because (1) the Cloud
obtained the correct input labels from the server via OT; (2) the
garbled circuit is constructed correctly; and (3) the smartphone
and the Cloud use the same (deterministic) encoding and hash
function.

The verification circuit computes a translation-invariant
distance (e.g., Manhattan or Euclidean distance) between
X = X + R and Y = Y+R, which is the same as the distance
between X and Y . For example, with Manhattan distance,
f (X , Y) = ∑n

i=1 |(xi + ri) − (yi + ri)| = ∑n
i=1 |xi − yi | =

f (X, Y). Therefore, the protocol computes the correct distance
between the template and the biometric sample.

D. Smartphone Output

With the protocol presented in this section, the server is
the only party with output. The protocol can be modified to
provide independent outputs to the smartphone and the server
as follows. Let OA be the subset of the circuit’s output wires
that correspond to the server’s output, and OB the subset
corresponding to the smartphone’s output. The server reveals
the portion of T corresponding to OB (denoted as TB) to
the smartphone, together with the signature on TB computed
by the smartphone during circuit construction, and withholds
the part corresponding to OA \ OB . At the end of the circuit
evaluation, the Cloud reveals OA to the server and OB to the
smartphone.

E. Cost of Our Approach

1) Server: For each protocol execution, the server veri-
fies one circuit received from the smartphone, which entails
performing three encryptions for each non-XOR gate and
verifying two signatures, computed on the entire circuit and

2564 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 11, NOVEMBER 2016

on the verification output labels. The server also acts as
sender in the instance run with the Cloud, where it encrypts
the receiver’s OT input using one-time pad with the key
provided by the smartphone. Therefore, the cost for the server
is O(n · v) + O(|Cir |), where |Cir | indicates the size of
the garbled circuit. In terms of communication, the server’s
cost is n · v bits from the smartphone (corresponding to the
OT decryption keys), O(κ2)+ O(n · v) (OT with the Cloud),
O(|Cir |) (sending the circuit to the Cloud) and O(| f (X, Y)|)
(receiving the output of the protocol from the Cloud).

2) Smartphone: The smartphone constructs a garbled circuit
and signs it, which entails three encryptions for each non-XOR
gate and two instances of signature generation. During the
authentication phase, the smartphone computes a one-time
pad encryption of its input, and verifies that the result of the
input verification from the Cloud is correct (this requires one
invocation of a hash function). The communication cost on
the smartphone is n · v bits sent to the server, O(|T2|)+ O(κ)
from the server, n · v bits sent to the Cloud, and O(κ) to the
server post-authentication.

3) Cloud: During authentication, the Cloud acts as receiver
in the OT protocol executed with the server. It then evaluates
the circuit. The cost for the Cloud is therefore O(n · v) +
O(|Cir|)+O(κ). The communication cost for the Cloud is n·v
bits from the smartphone for the OT input, O(κ2)+ O(n · v)
for performing OT with the server, O(|Cir |) for receiving a
circuit from the server, O(n · v) for sending the verification
gates to the smartphone, and O(| f (X, Y)|) for sending the
output of the computation to the server.

In terms of storage, the server has a copy of the encrypted
biometric template, one or more circuits from the smartphone,
and the user’s public key. The smartphone stores the template
decryption key and the signing keypair. The Cloud needs to
store only the user’s public key in order to verify the signature
on the circuits.

F. Evaluating Arbitrary Functionalities

If we assume that the Cloud and the smartphone do not
collude (as in Kamara et al. [21] and Carter et al. [9]), our
protocol is suitable for evaluating arbitrary functionalities, and
is therefore not limited to authentication. However, we believe
that assuming non-collusion is unrealistic in most scenarios.
It is still an open problem how to evaluate arbitrary functions
in presence of malicious and colluding Cloud and smartphone,
without using cut-and-choose.

VII. SECURITY PROOFS

In this section, we show that our approach is secure:
(1) when then Cloud is malicious, and the smartphone and the
server are semi-honest (Theorem 1); (2) when the Cloud and
the server are semi-honest, and the smartphone is malicious
(Theorem 2); (3) when the Cloud and the smartphone are semi-
honest, and the server is malicious (Theorem 3); and (4) when
the smartphone and the Cloud are malicious and colluding
(Theorem 4).

Throughout this section, we assume that the OT protocol
used in our construction is secure in the malicious model,

and therefore simulatable. Further, we assume that the garbled
circuit construction of Šeděnka et al. [47] is secure against
malicious clients and semi-honest servers. Finally, the signa-
ture scheme used in our protocol is existentially unforgeable,
and hash function H(·) is modeled as a random oracle.

A. Security Against a Malicious Cloud
We start by showing that a malicious Cloud cannot learn

any information about the inputs or outputs of the protocol
besides their size (privacy), nor it can affect the result of the
computation except with negligible probability (correctness).

To prove that our protocol provides privacy to the smart-
phone and the server, we need to show that the Cloud either
cannot distinguish correct protocol messages from random
values, or that correctly distributed messages can be con-
structed without knowledge of the inputs. Informally, this is
true because of the following reasons. During authentication,
the Cloud receives: (1) Cir and δ—because Cir is constructed
independently from the parties’ private inputs, it reveals no
information on them; (2) X ⊕ Z corresponds to the one-time-
pad encryption of X , and therefore appears to be random
and uniformly distributed to the Cloud; (3) the messages
exchanged during the OT protocol—because the underlying
OT protocol is secure in the malicious model, the Cloud learns
nothing from the execution besides the protocol’s outputs; and
(4) the outputs of the OT protocol, which is a set of random
strings corresponding to the circuit input labels.

To show that the protocol enforces correctness, we prove
that any deviation from the intended protocol steps which
affects the protocol output can always be identified by the
smartphone and/or the server. Clearly, the Cloud can abort at
any time. However, both the server and the smartphone will
notice it. If the Cloud does not abort, it can deviate from the
correct execution of the protocol as follows: (1) it can use
S �= X ⊕ Z as input to the OT protocol—this adversarial
strategy is identified by the smartphone by checking the
outputs of the verification sub-circuit; (2) it can alter the
hash value sent to the smartphone—however, this strategy can
be trivially identified by the smartphone, because the Cloud
cannot forge output labels corresponding to inputs to the OT
protocol other than the one used; and (3) it can alter the
output labels sent to the server—this is identified by the server
because the Cloud cannot reconstruct any label that does not
correspond to the circuit’s correct output, and the server knows
the list of all output labels. (Because the OT protocol is secure
against malicious adversaries, no efficient adversarial strategy
can cause the OT protocol to output the incorrect result.)

Next, we formalize this intuitive security argument.
Theorem 1: The protocol in Section VI securely computes

a function f according to Definition 1 when the Cloud is
malicious, while the smartphone and the server are semi-
honest.

Proof: To prove Theorem 1, we show that it is possible
to construct two simulators, Sim1 and Sim2, that act as the
simulator for the smartphone and the simulator for the server,
respectively (the two simulators share their internal state).
The two simulators interact with the malicious Cloud (the
adversary), and act as follows.

GASTI et al.: SECURE, FAST, AND ENERGY-EFFICIENT OUTSOURCED AUTHENTICATION FOR SMARTPHONES 2565

During Enrollment: The Cloud does not exchange any
message with the other parties during enrollment, and therefore
the simulators do not interact with the adversary in this stage.

During Authentication, Phase 1-4: Sim1 selects a uniform
random value V from {1, . . . , 2v}n and sends it to the adver-
sary. From the adversary’s point of view, V follows the
same distribution as X ⊕ Z : in our protocol, Z is uniformly
distributed in {1, . . . , 2v}n , as is therefore X ⊕ Z . Sim1 then
selects a random seed s1, and uses it to generate circuit Cir
according to the protocol. Then Sim1 signs Cir, generating
signature δ1. Sim2 then sends (Cir, δ) to the adversary.

Sim2 and the adversary engage in OT. Sim2 acts as OT sim-
ulator for the underlying OT protocol, using input labels from
Cir. (Sim2 successfully acts as OT simulator iff the underlying
OT protocol is secure against malicious adversaries.) At the
end of the protocol, Sim2 obtains the adversary’s input S. Sim2
then sends Cir to the adversary, together with a subset of the
server’s input labels corresponding to a uniformly distributed
random input. The labels are generated independently from
the parties’ inputs, and therefore the adversary cannot tell the
input labels it obtains are a related to the protocol inputs.

Eventually, the adversary sends hAdv to Sim1. Sim1 com-
putes h = H(ωver

1,b1
|| . . . ||ωver

(n·v),b(n·v)
), where bi is the i -th

bit of V . If hAdv �= h, then Sim1 aborts. Because of the
security of the underlying OT and garbled circuit construction,
and because H(·) is a random oracle, the adversary can send
hAdv = h iff its input to the OT protocol is S = V . In fact,
let b j be the first bit of S that differs from the corresponding
bit in V . At the end of the OT, the adversary learns the input
label corresponding to b j , which does allows it to decrypt
the verification output label corresponding to 1− b j , which is
needed to calculate h.

The adversary then sends the output of the circuit evaluation
to Sim2, which checks output correctness against T , and aborts
if the adversary’s output is incorrect.

Therefore, Sim1 and Sim2 can be constructed in such a
way that the adversary cannot distinguish them from honest
protocol participants. This proves Theorem 1. �

B. Security Against a Malicious Smartphone

To prove that a malicious smartphone cannot learn any
information on the template, nor can cause the protocol to
output an authentication score that is different from the score
correctly computed from its inputs, we need to show that all
messages received by the smartphone are either indistinguish-
able from random, or can be computed without knowledge
of the protocol inputs. Further, we need to show that devi-
ating from the protocol does not give any advantage to the
adversary. We address this by showing that, for each protocol
deviation, there is an equivalent protocol input modification
that the smartphone can compute with no knowledge of the
template.

Informally, all messages received by the smartphone during
the protocol reveal no information on the template because:
(1) T2 and γ are generated by the smartphone during the
enrollment phase independently from the user’s template; and
(2) hash h from the Cloud is computed on a subset of the
elements of T2 selected by the adversary using X and Z .

The smartphone can alter the following messages: (1) Z ,
sent to the server, and X ⊕ Z , sent to the Cloud—the two
modifications are equivalent, and for any two strings S1, S2
used to replace Z and X ⊕ Z , the adversary could have com-
puted the equivalent X as (S1⊕ S2)− R; (2) the confirmation
of input correctness, sent to the Cloud and the server—altering
this value will causes the protocol to abort for either the Cloud,
the server, or both, and does not otherwise affect the protocol
outputs.

This informal security argument is formalized next. In the
proof, the simulators run the protocol in the ideal world with
the TTP, and in the real world with the adversary [15].

Theorem 2: The authentication phase of the protocol in
Section VI securely computes a function f according to
Definition 1 when the smartphone is malicious, and both the
server and the Cloud are semi-honest.

Proof: We prove Theorem 2 by constructing two algo-
rithms, henceforth Sim1 and Sim2, which act as the simulator
for the Cloud and the simulator for the server, respectively
(the two simulators share their internal state). Sim1 and Sim2
interact with the malicious smartphone (the adversary), and
extract the smartphone’s input as follows.

During the Enrollment: Because the smartphone is not
compromised during enrollment (see Section IV-B), Sim2
receives the user’s encrypted template Y , seeds s1, . . . , sm ,
and signatures δ1, . . . , δm and γ1, . . . , γm . If the signatures
are correct, then Sim2 forwards Y to the TTP.

During Authentication, Phases 1-4: The adversary receives
R and sku . Then, it sends Z to Sim2, and X

∗
to Sim1. Sim2

recovers the adversary’s input as X
∗ ⊕ Z , and sends it to the

TTP. In the remainder of the protocol, Sim1 and Sim2 faithfully
follow all protocol steps. In particular, the adversary’s view
includes (T2, γ), which is independent from the party’s inputs,
and h, which corresponds to the subset of T2 identified by
X
∗⊕Z . Because all messages received by the adversary during

the protocol are computed consistently with the adversary’s
input, the adversary cannot distinguish between interacting
with the simulators, and interacting with the honest Cloud
and server. Therefore, the simulation is undetectable, and this
proves Theorem 2. �

C. Security Against a Malicious Server

Because the smartphone and the Cloud have no output, to
prove that our protocol is secure against a malicious server we
need to show that the adversary cannot distinguish protocol
messages from random values, or that protocol messages can
be generated without knowledge of the smartphone’s input.
Further, we need to show that a simulator interacting with the
server can extract the server’s protocol input, and use in in the
ideal world with the TTP.

Theorem 3: The protocol in Section VI securely computes
a function f according to Definition 1 when the server is
malicious, and both the smartphone and the Cloud are semi-
honest.

Proof: In order to prove Theorem 3, we show that
it is possible to construct two algorithms, Sim1 and Sim2,
which act as the simulator for the smartphone and for the

2566 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 11, NOVEMBER 2016

Cloud, respectively, and extract the adversary’s inputs. The
two simulators act as follows.

During the Enrollment: In the ideal world, the server has
no input, and Sim1 receives an encrypted template Y

Ideal
from

the TTP.
Sim1 executes the same protocols steps as the smartphone,

except that Y = Y
Ideal

. Sim1 generates (sk∗u , pk∗u), faithfully
constructs Cir1, . . . , Cirm from random seeds s1, . . . , sm , and
signs each circuit and circuit verification gates as δ1, . . . , δm

and γ1, . . . , γm respectively. Then, it sends pk∗u , s1, . . . , sm ,
δ1, . . . , δm , γ1, . . . , γm , and Y to the server. The adversary
cannot distinguish Sim1 from the smartphone because pk∗u ,
s1, . . . , sm , δ1, . . . , δm , γ1, . . . , γm , and Y all follow the same
distribution as the corresponding values from the smartphone.

During Authentication, Phase 1: Sim1 selects n · v random
bits z1, . . . , zn·v and sends them to the adversary.

Sim2 engages in the OT with the adversary. The input
of Sim2 to the OT protocol is n · v uniformly random bits
w1, . . . , wn·v . Because of the security of the underlying OT
protocol, the adversary cannot distinguish between Sim2 and
the Cloud. Then, Sim2 receives the adversary’s input labels.

During Authentication, Phase 2: The adversary sends Cir, δ,
T2, and γ to Sim2. If the signatures do not verify, Sim2 aborts.
Also, if the signature on Cir is valid, but Cir is not among the
circuits generated in the enrollment phase by Sim1, then Sim2
aborts. The latter abort happens with negligible probability,
since the adversary is not able to return a valid signature on
a circuit that was not previously signed by Sim1.

Sim2 “decodes” the adversary’s input labels to their cor-
responding input bits as Y

∗
, using all input gates of Cir

(which can be reconstructed from the corresponding seed,
generated during enrollment). Sim2 then verifies that the input
labels received from the adversary via OT correspond to the
subset of the smartphone’s input label from T2 selected by bits
(z1 ⊕ w1), . . . , (zn·v ⊕ wn·v), and aborts if they do not. Sim2
sends Y

∗
to the TTP.

During Authentication, Phase 3: Sim2 receives d =
f (X, Y) from the TTP. It encodes d using the the appropriate
output labels form Cir, and sends the resulting labels to the
adversary. Because f (X , Y) = f (X, Y), the labels corre-
sponding to d are distributed as expected by the adversary.

During Authentication, Phase 4: If the value corresponds to
a correct authentication decision, then Sim1 generates a new
circuit, signs it, and sends the seed and the signature to the
adversary. The messages corresponding to the circuit and its
signature are distributed as expected by the adversary.

This proves Theorem 3. �

D. Security Against Colluding Smartphone and Cloud

In this section, we show that even if the smartphone and the
Cloud are simultaneously malicious and colluding, they still
cannot learn any information on the server’s input, nor trick
the server to authenticate correctly without knowing the user’s
biometric template.

To model collusion, in this scenario the smartphone and
the Cloud act as a single malicious adversary. Informally,
when the smartphone and the Cloud act as a single entity,

our protocol falls back to the protocol of Šeděnka et al. [47].
Because the protocol in [47] is secure against malicious
clients, our protocol is secure against malicious and colluding
smartphone and Cloud. In particular, we need to show that it
is possible to build a simulator that successfully extracts the
adversary’s input, and that all messages from the simulator are
indistinguishable from correct protocol messages.

Theorem 4: The protocol in Section VI securely computes
a function f (X, Y) according to Definition 1 when the Cloud
and the smartphone are malicious and colluding, and the server
is semi-honest.

Proof: The security of our protocol when the Cloud
and the smartphone collude falls back to the security of the
underlying garbled circuit protocol. We prove Theorem 4 by
constructing simulator Sim1, which simulates the server. Sim1
interacts with the malicious adversary, which controls the
smartphone and the Cloud, and act as follows.

During the Enrollment: Because the smartphone is not
compromised during enrollment, Sim1 receives an encrypted
template Y , seeds s1, . . . , sm , and signatures δ1, . . . , δm and
γ1, . . . , γm from the legitimate user, while the adversary
receives R and sku . Sim1 verifies the correctness of the
circuits and the signatures, and aborts if verification fails. This
guarantees that the circuits compute the correct functionality.

During Authentication, Phases 1-4: Sim1 sends (Cir, δ) to
the adversary, where Cir is constructed from one of the seeds
obtained during enrollment and δ is the corresponding signa-
ture. Therefore, these two values are correctly distributed. It
then receives Z from the adversary (acting as the smartphone),
and interacts with the adversary acting as Cloud in the OT
protocol. Because the OT protocol is secure in the malicious
model, and therefore simulatable, Sim1 uses it to extract the
adversary’s input X

∗
. Then, Sim1 sends X

∗ ⊕ Z to the TTP,
and a random subset of its input labels to the adversary. The
labels are generated independently from the parties’ inputs,
and therefore the adversary cannot tell whether they are the
correct labels for Y .

Because there is no further protocol message sent from
the server to the smartphone or to the Cloud, Sim1 simply
verifies that the adversary confirms the correctness of the input
(Phase 2), and that it then returns a valid instance of circuit
output (Phase 3).

The adversary cannot distinguish between interacting with
the simulator, and interacting with an honest server. Therefore,
this proves Theorem 4. �

VIII. COMPARISON WITH OTHER CLOUD-AIDED

CIRCUIT EVALUATION PROTOCOLS

In this section, we compare our approach in terms of com-
plexity and security properties to three Cloud-aided garbled
circuit evaluation techniques: Salus [21], Carter et al. [9]
(CMTB hereafter), and Whitewash [8].

There are two aspects in which our protocol differs from
all three Cloud-aided techniques: (1) our approach does not
rely on cut-and-choose. This leads to a dramatic reduction in
execution time compared to current protocols (between 30 and
130 times, depending on the protocol, functionality, and input

GASTI et al.: SECURE, FAST, AND ENERGY-EFFICIENT OUTSOURCED AUTHENTICATION FOR SMARTPHONES 2567

TABLE II

OPERATIONS PERFORMED BY THE PARTIES. c REPRESENTS THE NUMBER OF CIRCUITS GENERATED FOR CUT-AND-CHOOSE

size) and bandwidth usage (50 to 90 times); and (2) to achieve
this performance efficiency, our technique sacrifices generality.
In fact, if we allow collusion between the Cloud and the
smartphone, our approach is suitable only for authentication.

Comparison of the asymptotic complexity of outsourcing
protocols is presented in Table II. Next, we provide a brief
overview of specific differences between our approach and
Salus, CMTB, and Whitewash.

A. Comparison to Salus

Salus guarantees security only in presence of non-colluding
adversaries. This is a substantially weaker model than the one
addressed in our work, because we assume that the Cloud
and the smartphone can collude. This limitation makes Salus
unsuitable for outsourcing authentication protocols, where the
smartphone owner is also the owner of the Cloud instance.
With Salus [21], the smartphone generates circuit randomness
and garbles its own inputs. In contrast, in our approach the
smartphone also generates the circuit. Salus can implement
functions which compute a single shared output value. Our
protocol supports functions that compute different outputs for
each protocol participant. Salus requires the use of a fair coin-
flipping algorithm, executed by all participants. This is not
needed in our protocol.

B. Comparison to CMTB

As in Salus, and in contrast to our approach, CMTB
assumes that none of the parties collude with the Cloud,
therefore making the protocol unsuitable for authentication.
In CMTB and our approach, OT and input verification are
outsourced to the Cloud. However, in CMTB, part of the OT
protocol is executed by the smartphone, which therefore incurs
substantial computation overhead. Finally, CMTB requires the
smartphone to run a two-party fair coin toss protocol, which
is not required in our protocol.

C. Comparison to Whitewash

Whitewash is the closest protocol to ours in terms of
security model and cost for the smartphone. Both our protocol
and Whitewash are secure malicious adversaries, and against
colluding malicious Cloud and smartphone.

While in our approach the smartphone constructs the cir-
cuit, circuit generation is offloaded to the Cloud and the
server in Whitewash. Depending on the authentication distance
function, our protocol requires the smartphone to perform
significantly more symmetric operations than with Whitewash.

In fact, while with Whitewash the smartphone performs a num-
ber of operations that depend only on the size of its own input,
with our approach the smartphone constructs the entire circuit.
However, because our protocol does not rely on cut-and-
choose, the cost of constructing a single circuit is, in practice,
very small (see results in Section IX-C). This allows our
protocol to have a better time/energy tradeoff than Whitewash.
For example, our protocol computes Hamming distance with
1,600-bit input in 3.29s, compared to the computation time of
95.57s of Whitewash. In this setting, the smartphone energy
cost of our protocol is 1.23 mWh, which corresponds to 0.01%
of the battery of a Samsung Galaxy S4.

As with Whitewash, our approach can evaluate function-
alities where the smartphone and the server obtain different
outputs.

IX. EVALUATION

We conducted a detailed performance and energy charac-
terization of our technique using a commodity smartphone.
We compared our approach with traditional garbled circuits
(i.e., non-Cloud-aided, with and without cut-and-choose), and
with the performance results reported by Carter et al. [8]. Our
evaluation is performed using two circuits: the first imple-
ments scaled Manhattan distance, while the second computes
Hamming distance. The former was chosen because previous
work on behavioral authentication has shown that scaled
Manhattan is among the top performers (see, e.g., [22], [47]).
The latter, because it is used in iris matching [6], and it is a
standard benchmark for garbled circuit implementations [8].

A. Experiment Setting

We used a Samsung Galaxy S4 smartphone running
Android 4.3. The smartphone’s CPU is a 4-Core 1.9GHz
Qualcomm Snapdragon, and is combined with 2GB RAM.
The battery capacity is 9,880 mWh. To measure the phone’s
power consumption, we connected it to a Monsoon power
monitor [32], which acted as a power supply and as a
data acquisition device. To obtain accurate measurements, we
bypassed the battery, and powered the smartphone solely via
the power monitor. To provide a realistic assessment of the
cost of the various protocols, we report energy consumption
for the entire system, including the screen (which was set
at medium brightness), WiFi, and standard OS background
processes. To evaluate the cost of the protocols on the server
and the Cloud, we deployed two Dell PowerEdge R320 rack
servers with Intel Xeon E5-2430L v2 6-Core 2.4GHz CPU
and 64GB RAM. The servers were running Ubuntu Linux
14.04 LTS with kernel 3.16.

2568 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 11, NOVEMBER 2016

TABLE III

INPUT SIZE AND CIRCUIT SIZE USED IN OUR EVALUATION. NUMBERS
REPORTED IN BRACKETS INCLUDE VERIFICATION GATES

We performed experiments in a controlled network envi-
ronment. The smartphone, the server, and the Cloud were
connected to the same broadcast domain via a single access-
point/switch. We used an Apple Airport Extreme Base Sta-
tion, which has three Gigabit Ethernet LAN ports and
802.11ac WiFi. The smartphone was connected to the access
point network through WiFi. The server and Cloud were con-
nected to the switch through Gigabit Ethernet ports. Because
the amount of data exchanged by the smartphone with our
protocol is very small (between 5 KB and 780 KB), especially
compared to the current state of the art (see Section IX-C), we
expect that performing communication over cellular network
would not meaningfully affect our results.

B. Implementation Details

The OT protocol used for the two non-Cloud-aided garbled
circuit implementations (i.e., semi-honest and malicious) is
from [43]. Our protocol uses the OT protocol from [1]. This
led to a small reduction in terms of communication cost for
our protocol (in the order of 600KB to a few MB, depending
on the protocol and input size), compared to the semi-honest
construction.

On the smartphone, we developed an Android application
that implements our protocol, as well as semi-honest garbled
circuits, and malicious cut-and-choose circuits based on the
code of Kreuter et al. [25]. Code in [25] uses pipelining
to reduce protocol execution time. Our implementation aims
to offer 80-bit (equivalent) security (κ = 80). Therefore,
the number of circuits used for cut-and-choose is c = 256.
Communication and authentication code on the smartphone
were implemented in C++ as an Android NDK library. The
code on the server and the Cloud was written in C++.

The scaled Manhattan distance circuit was instantiated with
8 and 28 features, represented using 12 bits (v = 12). These
values have been shown to lead to the lowest authentication
errors in [47] and in [46]. For Hamming distance, we used
1600- and 16384-bit inputs to be able to compare with [8].
We generated all signatures via the RSA_sign() function
of OpenSSL 1.0.1, instantiated using 1024-bit RSA keys
and SHA-256. We used SHA-256 to combine the output of
the verification gates sent by the Cloud to the smartphone.
Number of gates and approximate circuit size is presented
in Table III. Comparisons between techniques presented in
this paper and [8] are conservative, because the number of
gates used in our Hamming distance circuit can be further
reduced [7]. Relative performance improvements of our tech-
nique reported in Table IV are largely independent of circuit
design.

We divide the smartphone’s portion of the protocol into
online and offline computation. In our implementation, circuit
construction and signing is performed offline, while the rest
of the protocol (including all communication) is executed
online.

We did not use multi-threading to implement our technique.
Likewise, the code for the two non-Cloud-based garbled circuit
protocols was implemented as a single thread. This is in
contrast with the implementation of Whitewash, which used
MPI to divide protocol load across 64 CPU cores [8].

C. Results

Our results are summarized in tables IV and V. We report
the cost of all steps within each protocol in terms of compu-
tation, communication, and energy consumption. For commu-
nication and computation, we report both the overall protocol
time and the portion performed by the smartphone. We also
report how many authentication attempts can be performed
with each protocol before the smartphone runs out of battery,
assuming that the phone is not running any other program.

The performance figures for Whitewash and CMTB listed
in Table V were obtained by Carter et al. [8] using two
servers with dual four-core eight-thread Intel Xeon E5620,
and a Samsung Galaxy Note II smartphone with a 1.6GHz
CPU. Our servers are about 1% faster than those used in [8]
in single-threaded applications (based on the results from
https://www.cpubenchmark.net/singleThread.html).

As the results in tables IV and V indicate, our protocol
is substantially faster than current approaches secure in the
malicious model. Even though our approach is the only one
in which the smartphone constructs the circuit, the resulting
protocol is still considerably faster because our technique does
not require cut-and-choose.

Our protocol is also faster than the garbled circuit protocol
implementation secure in the semi-honest model. At first, this
might seem counter-intuitive, because our approach involves
more computation than its semi-honest counterpart. However,
the reason we were able to achieve this result is that OT,
which accounts for a substantial portion of the protocol cost,
is entirely offloaded to the Cloud and the server, which are
equipped with faster CPUs than the smartphone.

As reported in Table V, our approach is significantly faster
than both Whitewash and CMTB. Because of its performance
advantage, our protocol is presently the only one suitable for
low-latency authentication windows (i.e., our protocol is the
only one that allows authentication every 60 seconds or less).
The results in tables IV and V also indicate that our approach
leads to a substantial reduction in terms of bandwidth usage
compared to the state of the art. Our protocol reduces the
overall amount of data exchanged between the parties by one
to two orders of magnitude, and requires between 0.06MB
and 4.24MB depending on the circuit. Moreover, the amount
of data exchanged by the smartphone is very small, accounting
for just a fraction of the overall communication.

In terms of energy, the cost of traditional garbled circuits
secure in the malicious model is clearly unsustainable on
smartphones (see Table IV). With scaled Manhattan distance

GASTI et al.: SECURE, FAST, AND ENERGY-EFFICIENT OUTSOURCED AUTHENTICATION FOR SMARTPHONES 2569

TABLE IV

EXPERIMENT RESULTS FOR SCALED MANHATTAN AND HAMMING DISTANCE. THE “# OF PROTOCOL RUNS” COLUMN INDICATES
HOW MANY AUTHENTICATION ATTEMPTS CAN BE PERFORMED BEFORE EXHAUSTING A FULLY CHARGED 9,880 mWh

BATTERY, WITHOUT OFFLINE PRE-COMPUTATION

TABLE V

COMPARISON WITH CURRENT CLOUD-AIDED PROTOCOLS ON HAMMING
DISTANCE WITH 1,600 BIT AND 16,384 BIT INPUT

computation, the smartphone is able to run between 35 and
123 authentication attempts before exhausting the battery. This
corresponds to half-hour to two hours of smartphone usage
with 60-second authentication windows, and assuming that the
smartphone is not performing any other task. Similarly, when
using Hamming distance, the energy provided by the battery is
sufficient for performing up to 7 authentication attempts with
1,600 bits of input, and none using 16,384 bits.

In comparison, the energy cost of our approach is very
small. Our technique requires less than 0.2 mWh for comput-
ing scaled Manhattan distance, and between 1.23 mWh and
12.53 mWh for Hamming distance. Moreover, if the smart-
phone is allowed to perform some pre-computation (indicated
as “offline” in Table IV), the energy cost of scaled Manhattan
distance is below 0.05 mWh, and that of Hamming distance
is between 0.64 mWh to 6.86 mWh. This corresponds to a
negligible impact on the battery life of the device, which
allows the user to perform a large number of authentication
attempts (from 788 with Hamming distance, to over 1.7M with
Manhattan distance) on a single charge.

X. CONCLUSION

In this paper, we presented the first practical energy-
efficient outsourced privacy-preserving authentication proto-
col. Our approach is unique, because it provides security
against malicious and possibly colluding adversaries without
using cut-and-choose. With our protocol, user authentication
is performed in less than one second with scaled Manhattan

distance, and in 3.29-24.97 seconds with Hamming distance,
which is significantly faster than previous protocols. As a
consequence, our technique is currently the only one suitable
for continuous smartphone user authentication with windows
of 60 seconds or shorter. Because our protocol targets contin-
uous authentication of smartphone users, we measured energy
consumption and reported the overhead of our technique. Our
experiments show that the impact on the smartphone’s battery
life is very small (between 0.05 mWh and 12.53 mWh),
and negligible if circuit construction is performed offline,
e.g., while the smartphone is charging. Our proposal makes
privacy-preserving continuous authentication on smartphones
eminently feasible from a computational and energy consump-
tion standpoint.

REFERENCES

[1] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer extensions with security for malicious adversaries,” in
Proc. EUROCRYPT, 2015, pp. 673–701.

[2] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith, “Smudge
attacks on smartphone touch screens,” in Proc. 4th USENIX Workshop
Offensive Technol. (WOOT), 2010, pp. 1–7.

[3] L. Ballard, S. Kamara, F. Monrose, and M. K. Reiter, “Towards practical
biometric key generation with randomized biometric templates,” in Proc.
CCS, 2008, pp. 235–244.

[4] L. Ballard, S. Kamara, and M. K. Reiter, “The practical subtleties of
biometric key generation,” in Proc. 17th Conf. Security Symp., 2008,
pp. 61–74.

[5] D. Beaver, “Server-assisted cryptography,” in Proc. Workshop New
Security Paradigms, 1998, pp. 92–106.

[6] M. Blanton and P. Gasti, “Secure and efficient protocols for iris and
fingerprint identification,” in Proc. 16th ESORICS, 2011, pp. 190–209.

[7] J. Boyar and R. Peralta, “The exact multiplicative complexity of
the Hamming weight function,” Yale Univ., Dept. Comput. Sci.,
Tech. Rep. YALEU/DCS/TR-1260, 2003.

[8] H. Carter, C. Lever, and P. Traynor, “Whitewash: Outsourcing garbled
circuit generation for mobile devices,” in Proc. 30th Annu. Comput.
Security Appl. Conf. (ACSAC), 2014, pp. 266–275.

[9] H. Carter, B. Mood, P. Traynor, and K. Butler, “Secure outsourced
garbled circuit evaluation for mobile devices,” in Proc. 22nd USENIX
Security Symp., 2013, pp. 1–22.

[10] R. Cramer, I. Damga̋rd, and J. Nielsen, “Multiparty computation from
threshold homomorphic encryption,” in Proc. Int. Conf. Theory Appl.
Cryptograph. Techn., 2001, pp. 280–300.

2570 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 11, NOVEMBER 2016

[11] Data Genetics: Pin Analysis, accessed on Aug. 1, 2015. [Online].
Available: http://www.datagenetics.com/blog/september32012/

[12] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, “Touchalytics:
On the applicability of touchscreen input as a behavioral biometric for
continuous authentication,” IEEE Trans. Inf. Forensics Security, vol. 8,
no. 1, pp. 136–148, Jan. 2013.

[13] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st STOC, 2009, pp. 169–178.

[14] C. Gentry and S. Halevi, “Implementing Gentry’s fully-homomorphic
encryption scheme,” in Proc. 30th EUROCRYPT, 2011, pp. 129–148.

[15] O. Goldreich, Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[16] V. Goyal, P. Mohassel, and A. Smith, “Efficient two party and multi party
computation against covert adversaries,” in Proc. 27th EUROCRYPT,
2008, pp. 289–306.

[17] Y. Huang, J. Katz, and D. Evans, “Efficient secure two-party compu-
tation using symmetric cut-and-choose,” in Proc. 33rd CRYPTO, 2013,
pp. 18–35.

[18] A. K. Jain, R. M. Bolle, and S. Pankanti, Biometrics: Personal Identi-
fication in Networked Society. New York, NY, USA: Springer, 1999.

[19] A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in Proc.
6th CCS, 1999, pp. 28–36.

[20] S. Kamara, P. Mohassel, M. Raykova, and S. Sadeghian, “Scaling private
set intersection to billion-element sets,” in Proc. Int. Conf. Financial
Cryptography and Data Security, 2014, pp. 195–215.

[21] S. Kamara, P. Mohassel, and B. Riva, “Salus: A system for server-aided
secure function evaluation,” in Proc. ACM CCS, 2012, pp. 797–808.

[22] K. S. Killourhy and R. A. Maxion, “Comparing anomaly-detection
algorithms for keystroke dynamics,” in Proc. IEEE/IFIP Int. Conf.
Dependable Syst. Netw., Jun./Jul. 2009, pp. 125–134.

[23] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “Improved garbled
circuit building blocks and applications to auctions and computing
minima,” in Proc. 8th CANS, 2009, pp. 1–20.

[24] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in Proc. 35th Int. Colloq. Automata, Lang.
Program., 2008, pp. 486–498.

[25] B. Kreuter, A. Shelat, and C.-H. Shen, “Billion-gate secure computation
with malicious adversaries,” in Proc. 21st USENIX Conf. Security Symp.,
2012, pp. 285–300.

[26] Y. Lindell, “Fast cut-and-choose-based protocols for malicious and
covert adversaries,” J. Cryptol.. vol. 29, no. 2, pp. 456–490, 2016.

[27] Y. Lindell and B. Pinkas, “Secure two-party computation via cut-and-
choose oblivious transfer,” J. Cryptol., vol. 25, no. 4, pp. 680–722, 2012.

[28] Y. Lindell, and B. Riva, “Cut-and-choose Yao-based secure computation
in the online/offline and batch settings,” in Proc. Int. Cryptol. Conf.,
Berlin, Germany, 2014, pp. 476–494.

[29] H. Lu, A. J. B. Brush, B. Priyantha, A. K. Karlson, and J. Liu,
“Speakersense: Energy efficient unobtrusive speaker identification on
mobile phones,” in Pervasive Computing. Berlin, Germany: Springer,
2011, pp. 188–205.

[30] F. Monrose, M. Reiter, Q. Li, and S. Wetzel, “Cryptographic key
generation from voice,” in Proc. IEEE Symp. Security Privacy, 2001,
p. 202.

[31] F. Monrose, M. K. Reiter, and S. Wetzel, “Password hardening based
on keystroke dynamics,” Int. J. Inf. Security, vol. 1, no. 2, pp. 69–83,
2002.

[32] Monsoon Power Monitor, accessed on Aug. 14, 2015. [Online].
Available: http://www.msoon.com/LabEquipment/PowerMonitor/

[33] A. Nagar, K. Nandakumar, and A. K. Jain, “Biometric template trans-
formation: A security analysis,” Proc. SPIE, vol. 7541, p. 75410O,
Jan. 2010.

[34] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich, “SCiFI—A
system for secure face identification,” in Proc. IEEE Symp. Security
Privacy, May 2010, pp. 239–254.

[35] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure
two-party computation is practical,” in Proc. 15th ASIACRYPT, 2009,
pp. 250–267.

[36] T. Plantard, W. Susilo, and Z. Zhang, “Fully homomorphic encryption
using hidden ideal lattice,” IEEE Trans. Inf. Forensics Security, vol. 8,
no. 12, pp. 2127–2137, Dec. 2013.

[37] T. Rabin and M. Ben-Or, “Verifiable secret sharing and multiparty
protocols with honest majority,” in Proc. 21st STOC, 1989, pp. 73–85.

[38] K. A. Rahman, K. S. Balagani, and V. V. Phoha, “Snoop-forge-replay
attacks on continuous verification with keystrokes,” IEEE Trans. Inf.
Forensics Security, vol. 8, no. 3, pp. 528–541, Mar. 2013.

[39] N. K. Ratha, J. H. Connell, and R. M. Bolle, “Enhancing security
and privacy in biometrics-based authentication systems,” IBM Syst. J.,
vol. 40, no. 3, pp. 614–634, Apr. 2001.

[40] A. Serwadda and V. V. Phoha, “When kids’ toys breach mobile phone
security,” in Proc. ACM CCS, 2013, pp. 599–610.

[41] A. Serwadda, V. V. Phoha, and Z. Wang, “Which verifiers work?:
A benchmark evaluation of touch-based authentication algorithms,” in
Proc. 6th BTAS, Sep./Oct. 2013, pp. 1–8.

[42] A. Shelat and C.-H. Shen, “Fast two-party secure computation with
minimal assumptions,” in Proc. ACM CCS, 2013, pp. 523–534.

[43] A. Shelat and C.-H. Shen, “Two-output secure computation with mali-
cious adversaries,” in Proc. Annu. Int. Conf. Theory Appl. Cryptogr.
Techn., 2011, pp. 386–405.

[44] E. Shi, Y. Niu, M. Jakobsson, and R. Chow, “Implicit authentication
through learning user behavior,” in Proc. Int. Conf. Inf. Secur., 2010,
pp. 99–113.

[45] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware, your
hands reveal your secrets!” in Proc. ACM CCS, 2014, pp. 904–917.

[46] Z. Sitová et al., “HMOG: New behavioral biometric features for con-
tinuous authentication of smartphone users,” IEEE Trans. Inf. Forensics
Security, vol. 11, no. 5, pp. 877–892, May 2016.

[47] J. Šeděnka, S. Govindarajan, P. Gasti, and K. S. Balagani, “Secure
outsourced biometric authentication with performance evaluation on
smartphones,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 2,
pp. 384–396, Feb. 2015.

[48] Y. Xu, J. Heinly, A. M. White, F. Monrose, and J.-M. Frahm, “Seeing
double: Reconstructing obscured typed input from repeated compromis-
ing reflections,” in Proc. ACM CCS, 2013, pp. 1063–1074.

[49] A. C.-C. Yao, “How to generate and exchange secrets,” in Proc.
27th FOCS, Oct. 1986, pp. 162–167.

[50] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole:
Reducing data transfer in garbled circuits using half gates,” in Proc.
Annu. Int. Conf. Theory Appl. Cryptogr. Techn., 2015, pp. 220–250.

Paolo Gasti (M’14) was a Research Scholar with
the University of California, Irvine. He is cur-
rently an Assistant Professor of Computer Science
with the School of Engineering and Computing
Sciences, New York Institute of Technology. His
research focuses on behavioral biometrics, privacy-
preserving biometric authentication and identifi-
cation, secure multi-party protocols, and network
security. His research has been sponsored by
the Defense Advanced Research Project Agency.
He received the B.S., M.S., and Ph.D. degrees from

the University of Genoa, Italy. He is a Fulbright Scholar.

Jaroslav Šeděnka is pursuing the Ph.D. degree
with the Department of Mathematics and Statistics,
Masaryk Univ., Brno, Czech Republic. His research
interests include lattice cryptography, applied cryp-
tography, and algebraic number theory.

Qing Yang received the B.S. degree from the
Civil Aviation University of China in 2003 and
the M.S. degree from the Chinese Academy of
Sciences in 2007. He is currently pursuing the Ph.D.
degree with the Department of Computer Science,
College of William & Mary. His research interests
are ubiquitous computing, smartphone security, and
energy efficiency.

GASTI et al.: SECURE, FAST, AND ENERGY-EFFICIENT OUTSOURCED AUTHENTICATION FOR SMARTPHONES 2571

Gang Zhou (SM’13) received the Ph.D. degree from
the University of Virginia in 2007. He is currently an
Associate Professor, and also the Graduate Director
with the Computer Science Department, College of
William and Mary. He has authored over 70 aca-
demic papers in the areas of sensors and ubiq-
uitous computing, mobile computing, body sensor
networks, internet of things, and wireless networks.
The total citations of his papers are more than 5000
according to Google Scholar, among which five of
them have been transferred into patents and the

MobiSys’04 paper has been cited over 800 times. He is a Senior Member
of ACM. He is currently serving on the Journal Editorial Board of IEEE
Internet of Things and Computer Networks (Elsevier). He received the award
for his outstanding service to the IEEE Instrumentation and Measurement
Society in 2008. He was a recipient of the best paper award of the IEEE
ICNP 2010. He received the NSF CAREER Award in 2013. He received the
2015 Plumeri Award for Faculty Excellence.

Kiran S. Balagani received the Ph.D. degree
from Louisiana Tech University. He is currently
an Assistant Professor of Computer Science with
the New York Institute of Technology. His work
has appeared in several peer-reviewed journals,
including the IEEE TRANSACTIONS ON PATTERN

ANALYSIS AND MACHINE INTELLIGENCE, the
IEEE TRANSACTIONS ON INFORMATION FOREN-
SICS AND SECURITY, the IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, the IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBER-

NETICS, and Pattern Recognition Letters. He holds three U.S. patents in
network-centric attack detection. His research interests are in cyberbehavioral
anomaly detection, unauthorized user-access behaviors, behavioral biometrics,
and privacy-preserving biometrics. His teaching interests include development
of graduate and undergraduate courses in network security and biometrics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

