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Abstract—Continuous authentication aims to authenticate
users at regular intervals post-login, typically using biometric
features that capture the user’s behavior. One of the drawbacks of
continuous authentication is that it usually introduces a high au-
thentication latency, i.e., behavioral features need to be captured
for 45–120 seconds in order to achieve acceptable authentication
error rates. In this paper, we take a step towards addressing this
problem by harnessing 3D motion capture data and creating an
extensive set of body motion and posture features with the goal of
achieving low authentication error rates with short (1–5 second)
authentication latencies. To evaluate our features, we collected
a dataset from 39 users engaged in a set of smartphone tasks
performed in a 3D motion capture studio. To collect our data, we
placed 41 IR-reflective markers on the subjects’ body and 3 on the
smartphone. The markers were tracked by 3D motion capture
cameras. During data collection, subjects were either walking
along a pre-determined path or sitting. We show that our features
can lead to a low equal error rate (EER) of 6.4% with 1-second
latency, and 5.4% with 5-second latency. In contrast, under the
same experimental settings, swipe and phone-movement features
alone led to an EER of 15.7% for a 60-second authentication
latency. While our features demonstrate the potential to achieve
low authentication error with very low authentication latencies,
we envision that in practice these features will be collected using
standard smartphone sensors and consumer-grade wearable
devices. We believe that our results hold transformative potential,
because they shift continuous authentication from a reactive (i.e.,
detection is successfully performed well into the attack) to a
proactive security measure (i.e., detection happens as the attack
starts). As part of our contributions, we have made the dataset
used in this paper publicly available.

Index Terms—Behavioral Biometrics, Smartphone Authentica-
tion, Continuous Authentication, 3D Motion Capture

I. INTRODUCTION

THE goal of continuous smartphone user authentication
is to determine whether the genuine user is operating a

device post-unlock. Biometric modalities suitable for continu-
ous authentication must be collectable without disrupting the
user’s workflow [1]. Prior work has demonstrated that several
naturally-occurring smartphone user behaviors can be reliably
used for continuous authentication. These include touchscreen
gestures (swipes and taps) [2], [3], [4], [5], [6], [7], keystroke
dynamics [8], [9], [10], [11], phone-movement [12], [13], [14],
[15], gait [8], [16], [17], [18], [19], face recognition [20], and
more recently, acoustic reflections [21].

With all smartphone behavioral modalities there is a trade-
off between authentication latency, defined as the time needed
to collect enough behavioral data to trigger the next authentica-
tion event, and the resulting authentication error rate, defined
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as the percentage of errors (false positives and false negatives)
made by the authentication system.

Longer authentication latencies increase the time between
a successful impersonation attack and its detection. As a
result, shorter authentication latencies are preferred. However,
because of the inherent noise in smartphone behavioral fea-
tures, longer authentication latencies tend to result in lower
error rates. Therefore, continuous authentication systems based
on smartphone behavioral features often struggle to strike
the right balance between authentication the latency and the
authentication error rate.

To achieve acceptable authentication error rates, most
modalities tend to have authentication windows in the order
of 45–120 seconds [21], [22], [23]. This is far from ideal,
because it means that the authentication system will typically
allow the adversary to operate the smartphone for an amount
of time that could be sufficient to cause significant damage.

With this work, we identify a catalog of features that can
be used to reduce authentication latency to 1–5 seconds while
maintaining error rates in line with the current state of the
art [3]. We argue that a system that is able to cut authentication
latency from 45 to 5 seconds is a game-changer in terms of
security, because it can effectively prevent the attack, rather
than merely identifying it once the damage has been done.

To achieve this goal, we focus on user posture and body
movement during swipe. To capture this information, we use
a 3D motion capture system that provides a fine-grained
representation of the user’s body in space. We then combine
features extracted from motion capture data with smartphone
touchscreen swipe and phone-movement features. Our results
show that posture and body movement features lead to a
substantial reduction in authentication latency without sac-
rificing on error rates. For instance, in the sitting posture,
we were able to achieve an equal error rate (EER) of 5.4%
for a 5-second authentication window using our features with
a Random Forest verifier. In the same setting, swipe and
hand phone-movement features alone led to an EER of 14.6%
for a 60 second window. Similarly, for walking posture we
achieve 6.9% EER using our features, compared to 15.7%
EER when using only swipe and phone-movement features. To
our knowledge, this is the first work that demonstrates that:
(1) posture and body movement behavioral features can be
harnessed to reliably authenticate users, and (2) when using
appropriate combinations of features, smartphone behavioral
authentication can achieve low error rates with authentication
latencies as low as 1–5 seconds.

This work focuses on the foundational aspects of posture
and body movement based behavioral authentication. We do
not expect that, in real-world settings, body posture/movement
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features will be extracted for the purpose of continuous
authentication using 3D motion capture equipment. Our goal
in using this equipment is to determine which features, when
accurately collected, result in low authentication latency and
low error rates. In practice, we envision that these features
will be collected using standard smartphone sensors and other
wearable devices (see Section V for examples and discussion
of how these features can be estimated in the real-world).

A. Summary of Contributions

The main contributions of this work are summarized next:
• We demonstrate that posture and body movement can

be reliably used to continuously authenticate smart-
phone users.

• By augmenting traditional swipe and phone-movement
features on smartphones with body posture and movement
features, we are able to reduce authentication latency to
3–5 seconds while maintaining error rates in line with the
current state of the art. This is a significant improvement
over the 45–120 second authentication latencies common
in prior behavioral authentication work, to the point that
it transforms continuous authentication from a reactive to
a proactive security measure.

• To evaluate our features, we collected a unique dataset
from 39 users while they were performing smartphone
tasks. The dataset includes a total of 29,827 swipes,
as well as keystroke data, and has been made publicly
available by the authors (see https://www.nyit-lamp.com/
dataset/dataset4/).

• We perform an extensive analysis of the features we
use, including ranking based on mutual information and
the relationship between anthropometric characteristics,
i.e., physiological measurements and proportions of the
human body, and the performance of the features that
capture them.

• We identify the body region combination that provides
the most valuable information for body posture- and
movement-based smartphone user authentication.

B. Organization

The rest of this paper is organized as follows. We review
related work in Section II. In Section III, we present our
experimental setup and the dataset we collected. In Section IV,
we report our results. In Section V, we present existing studies
that demonstrate body posture and movement captured using
smartphones and wearable devices. We conclude in Section VI.

II. RELATED WORK

There is a substantial body of work on continuous authenti-
cation. In this section, we focus on the most relevant work in
smartphone behavioral biometrics, human activity recognition
related to security applications, and motion capture biometrics.
In Table I, we summarize relevant related work, and the
corresponding datasets used in each study.
Smartphone Behavioral Biometrics. Behavioral biometrics
can be used to continuously authenticate a user on their mobile

device based on their behavior [24], [25]. Behavioral signals,
such as keystroke dynamics, gait, and swipes, can be derived
from sensors on smartphones capable of accurately measuring
touch interactions, the acceleration and rotation of the device.

Chao et al. [3] explored the use of swipes using multiple
fingers and varying swipe lengths. Their work shows that
swipes can be used to identify users, with the best performing
swipe being with the right thumb with an EER of 13.5%.
They also demonstrated that a fusion of swipes, specifically
a leftward swipe with the right thumb and a leftward swipe
with the left thumb, yield an improved EER of 8.1%. Shen et
al. [5] explore swipe-based authentication using a dataset of
71 users using a feature set of long touches on smartphones,
and report an EER of 8.87% at 6.11 seconds or 5 swipes.

Sitová et al. [22] utilized smartphone accelerometer and gy-
roscopic sensors to extract Hand, Movement, Orientation and
Grasp (HMOG) features. Their results showed HMOG features
performed better during walking rather than sitting, and that
phone-movement features perform better during touchscreen
interaction. Shen et al. [26] perform multi-modal behavioral
authentication using phone-movement data collected during
swipe actions, expanding on their original feature set by in-
cluding smartphone movement with gyroscope and accelerom-
eter data. In their experiments over a dataset of 102 subjects,
they achieve EERs between 4.93% and 26.74% depending on
the authentication window size, which was between 0.73 and
16.32 seconds.

Li et al. [27] demonstrated that data augmentation can be
used to achieve a behavioral authentication EER of 8.33%
across a 5-second window using multiple smartphone in-
teraction behaviors extracted from the HMOG dataset [22].
However, it is unclear what the EERs were for each individual
behavior, such as swiping, typing, and other smartphone
activities. Ray-Dowling et al. [28] evaluate a set of swipe and
phone-movement features on two public smartphone datasets:
BB-MAS [29], and HMOG [22]. They were able to achieve
low equal error rates of 0.2% and 1.5% respectively, using
25 seconds of motion data and about 2.5–8 minutes of swipe
data. Garbuz et al. [2] demonstrated that vertical swipes can
be used as a behavioral biometric in conjunction with phone-
movements, successfully identifying impostors after 2–3 ges-
tures and accidentally blocking the legitimate user after 115–
116 gestures. Kumar et al. [12] explored fused biometrics,
and demonstrated that phone-movement in conjunction with
swiping and typing can be used to authenticate users. They
achieved a best accuracy of 93.33%.

Human Activity Recognition. Human activity recognition
(HAR) has been used in a variety of applications, including
healthcare [30], sports [31], and security [32], [33], [17],
[34], [35], [36], [37]. In the latter scenario, HAR has been
used to detect and prevent unauthorized access to computers.
Chatterjee et al. [37] demonstrated that it is possible to use
posture as a biometric by capturing temporal postural signals
and applying S-transforms to determine characteristic features.
Their work shows that they were able to successfully identify
users with an authentication accuracy of 94–95%.

Motion Capture Biometrics. Motion capture is the process of
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recording the motion of objects and people in space. Motion
capture is used in a variety of scenarios, including entertain-
ment, sports, and security. In the context of user authentication
and identification, examples include [38], [39], [40], [41],
[42], [43]. In particular, Munsell et al. [41] captured motion
data using a Kinect RGBD sensor, showing the effectivess
of anthropometric features for low-cost user identification.
They report an average EER of 13%. Similarly, Derlatka et
al. [43] demonstrated the use of motion capture for continuous
authentication, achieving a similar EER of 13% also using
Kinect sensors with accelerometers. Muhammad et al. [42]
demonstrated the feasibility of identifying users based on gait
with data captured from a smartphone. They achieved an EER
of 13%, which aligns with the state of the art for video motion
capture. This demonstrates the viability of motion capture not
only in identifying users but also as a meaningful biometric.

To our knowledge, this paper is the first to explore the use
of posture and body movement features combined with swipe
signals for the purpose of continuous behavioral authentication
of smartphone users.

III. EXPERIMENT SETUP

To evaluate the features presented in this paper, we collected
data from 39 subjects between the ages of 18 and 35.1 The
study was approved by the NYIT’s Institutional Review Board
under protocol BHT-1290, and all subjects provided informed
consent. Subjects were provided with an iPhone XR [49]
running a custom data collection app designed to present
common interaction modalities, such as swiping and tapping
on the default virtual keyboard. The swiping task consisted
of swiping a word, such as “Green”, to the corresponding
color on an edge of the phone. The color of the font was
intentionally different from the color indicated by the word
itself, requiring the user to engage in a simple cognitive task
(see Figure 1). There were four colors in total, one on each
edge of the screen. During all experiments, the smartphone’s
onboard sensors captured accelerometer, gyroscope, and swipe
metrics along with the x and y pixel coordinates for each swipe
and tap event.

To acquire precise body movement and posture information,
we performed all experiments at NYIT’s 3D motion capture
studio, which is equipped with a 30-camera Vicon Nexus
2.6 Optical Motion continuous capture system. Subjects were
instrumented with 39 reflective markers according to the Vicon
Nexus Plug-In-Gait model [50], which places markers over
the entire body including limbs, trunk, pelvis, and head. We
customized the model by adding a marker to the base of the
nail bed of each thumb. We also placed 3 markers, one mark
each on the top, left, and right sides of the smartphone. The
markers acted as discrete sensors of positions in space. 3D
positional data of each marker was captured in the x, y, and
z coordinates at 100 frames per second.

The 3D motion capture software used a Butterworth [51]
filter to reduce noise. We relied on custom gap filling pipelines

1We planned to use data from 40 subjects in our experiments. However,
for one subject, a motion capture sensor failed to record data in the second
session. As a result, in this work we used 39 subjects in our experiments.

Fig. 1. Swiping task. The user must swipe the word “Green”, presented in
blue color font, to overlap with the green banner at the bottom of the screen.

from Vicon Nexus to determine sensor position during short
periods when markers were not visible to the IR cameras.
During data collection, users were asked to either walk around
a square perimeter with sides of approximately 6 meters or sit
on a chair without arm rests.

For each subject, data collection trials were divided in two
sessions, spaced by about one-week on average. (Three users,
which are not accounted for in this average, performed their
session several months apart due to restrictions associated with
COVID-19.) Sessions were divided in 24 sixty-second trials
evenly split across 4 body posture/activity combinations, i.e.,
sit and swipe, sit and type, walk and swipe, walk and type.
We randomized the order of the aforementioned combinations
at the start of each session. We recorded a total of 29,827
swipes, defined as a continuous touchscreen interaction with
a length of at least 35 pixels. All first sessions combined
resulted in 14,190 swipes, while the second sessions resulted
in 15,637 swipes. On average, each user performed 373 swipes
per session, with a minimum of 192 and a maximum of 494
swipes. Smartphone and 3D motion capture data collected
during the first session was used to construct the training sets
for our authentication experiments. Data collected during the
second session was used as genuine and impostor (test) data.

IV. RESULTS

In our experiments, we used a set of 46 smartphone features
based on swipe characteristics, captured by the smartphone’s
touchscreen, and phone-movement data, captured by the smart-
phone’s accelerometer and gyroscope sensors (see Table II).
We extracted a total of 83 features from 3D motion capture
data, representing the user’s posture and body movement
based on distances, accelerations, and velocities of the motion
capture markers, as well as angle-based relative direction
features. Among the 83 features, 36 were excluded from
our analysis due to their relatively low mutual information
compared to other features. The 36 features excluded were
the velocities and accelerations of hand, wrist, and elbow
markers (on both the left and right arm), each of these 12
markers providing x, y, z dimensions of data. The resulting
mutual information of all features used in our authentication
experiments are presented in the Appendix (see tables VII



IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. , NO. , MARCH 2024 4

TABLE I
SELECTED RESEARCH RELATED TO BIOMETRIC AUTHENTICATION LEVERAGING SMARTPHONE BEHAVIORS AND BODY MOVEMENT. “PUBLIC” INDICATES

THAT THE DATASET USED IN THE PAPER IS PUBLICLY AVAILABLE.

Work # of users Behaviors Feature Extraction Classifier(s) Auth. Results
Munsell et al.
(2012) [41] 10

Body movement
while walking and running 100 videos captured with Kinect RGBD SVM 13% EER

Derlatka et al.
(2015) [43] 31

Body movement
while walking and running

600 Gait cycles captured with
Kistlers force plates, Kinect device,
accelerometers

KNN
0.85% FAR
4.55% FRR
13% EER

Javid et al.
(2016) [44] 60 Hand and body movement Features captured from

accelerometer, gyroscope MLP, KNN, SVM, NB 81% - 97%
accuracy

Kumar et al.
(2016) [45] 28

Swiping, typing,
phone movement
while web browsing

Features captured with
gyroscope KNN, RF 93.33%

accuracy

Shen et al.
(2016) [5] 71 Swiping Pressure, length, duration,

angle, position, velocity
KNN, SVM
BPNN, RF 8.87% EER

Sitova et al.
(2016) [22] 100 (Public [22])

Hand movement,
tapping while
walking and sitting

60 resistance, 36 stability features
captured with accelerometer, gyroscope,
magnetometer

OSVM 7.16% EER

Balazia et al.
(2017) [38] 48 (Public [46])

Body movement
while walking

3D body joint coordinates
captured with MoCap 1-NN EER: 16.74%

Muhammad et al.
(2017) [42] 35

Body movement
with Smartphone

Gait data captured with
accelerometer Gait cycle estimation 13% EER

Li et al.
(2018) [27] 100 (Public [22]) Hand and body movement Feature captured with

accelerometer, gyroscope OSVM 8.33% overall EER
(4.66% median EER)

Shen et al.
(2018) [26] 102

Swiping and tapping while
walking and sitting

Features captured with accelerometer,
gyroscope, magnetometer, orientation HMM-based 5.03% FRR

3.98% FAR
Garbuz et al.
(2019) [2] 36 Swiping and tapping Movement coordinates, timestamps captured

with accelerometer, gyroscope, magnetometer OSVM Best FRR: 5%
Best FAR: 7.1%

Kwolek et al.
(2019) [39] 32 (Public [39])

Body movement
while walking Gait features captured with MoCap

NB, SVM,
MLP, KNN
1,3,5-NN

Best CCR (accuracy)
94.83% with MLP

Volaka et al.
(2019) [47] 100 (Public [22])

Scrolling, tapping while
walking and sitting

Features captured with
accelerometer, gyroscope, magnetometer

Binary Classification
Neural Network 15% EER

Abuhamad et al.
(2020) [48] 84

Swiping, typing,
phone movement
during normal user use

Feature captured with accelerometer,
gyroscope, magnetometer, elevation

LSTM-based
(RNN)

98% F1 Score
0.95% FAR
6.67% FRR
0.41% ERR

Ray-Dowling et al.
(2022) [28]

100 [22] and 115 [29]
(both public) Swiping and typing while sitting Features captured with

accelerometer, gyroscope, magnetometer, OSVM, Binary-SVM 1.5% and
0.2% EER

Chao et al.
(2023) [3] 36 Swiping

Pressure, size, time, coordinate, velocity,
hybrid captured with accelerometer, gyroscope,
magnetometer, linear acceleration, gravity

SVM, RF

13.5%EER
(right thumb)
8.1%EER
(left thumb)

This Work
(2024) 39 (Public)

Swiping, body movement
while walking, sitting

46 smartphone swipe, accelerometer,
gyroscope features, 47 features
captured with 3D MoCap

SM, KNN
RF, OSVM

5.35% EER
with Random Forest
at 5 seconds

and VIII for sitting and walking, respectively). The 47 motion
capture features we retained for our authentication experiments
are presented in Table III. These represent the user’s posture
and body movement in terms of distances, accelerations, and
velocities of the motion capture markers. The angle-based
features represent the azimuth angle θ, i.e., the angle of
rotation from the meridian plane, and φ represents the angle
with respect to the polar axis. Figure 2 provides a visual
representation of θ and φ. Our features do not consider the
radial distance r.

In our experiments, we focused the performance of each
class of features as a function of the authentication latency, i.e.,
the time needed to collect enough data to trigger an authen-
tication decision. In general, shorter authentication latencies
are preferred because they allow the authentication system to
identify the impostor more quickly, and therefore they tend to
limit the amount of time available to the impostor to attack
the system. For each class of features we report performance
over very short (1 to 3 seconds), short (5 to 10 seconds) and
long (15 to 60 seconds) authentication latencies. Our analysis
separates results by body posture (sitting and walking), and
body regions (upper, lower, and center).

In our analysis, we grouped the motion capture markers (and
the features extracted from them) into upper, center, and lower
body regions. The Vicon 3D Motion Capture system which

 

Fig. 2. Spherical coordinate system used for our relative-direction features. a
and b represent two markers; φ represents the angle of rotation with respect
to the polar axis, while θ is the azimuth angle.

we used to collect body motion data uses a full body Plug-
In-Gait biomechanical model [50], which is a skeletal model
representing the human body as a series of segments (skeleton)
connected by joints. In the Vicon Plug-In-Gait model, there
are a total of 10 segments, involving head, thorax, upper
arm, forearm, hand, pelvis, hip, and knee. While such fine-
grained segmentation of the skeletal model may be suitable
for certain biomechanical studies ([52], [53]), we opted for a
simpler model (upper, center, and lower), to aid the description
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TABLE II
SMARTPHONE SWIPE-BASED (“BASELINE”) FEATURES.

Type Feature Description # of dim.
Length Total Length of Swipe 1

Swipe Time Time Duration of Swipe 1
Characteristics Angle Angular Sum of Swipe 1

Velocity Average Velocity of Swipe 1
Mean Mean of Accelerometer Data in x, y, z 3
SD Standard Deviation of Accelerometer Data in x, y, z 3

Kurtosis Kurtosis of Accelerometer Data in x, y, z 3
Accelerometer Max Maximum of Accelerometer Data in x, y, z 3

Data Min Minimum of Accelerometer Data in x, y, z 3
Energy Energy of Accelerometer Data in x, y, z 3
Entropy Entropy of Accelerometer Data in x, y, z 3
Mean Mean of Gyroscope Data in x, y, z 3
SD Standard Deviation of Gyroscope Data in x, y, z 3

Kurtosis Kurtosis of Gyroscope Data in x, y, z 3
Gyroscope Max Maximum of Gyroscope Data in x, y, z 3

Data Min Minimum of Gyroscope Data in x, y, z 3
Energy Energy of Gyroscope Data in x, y, z 3
Entropy Entropy of Gyroscope Data in x, y, z 3

Total Number of Features 46

TABLE III
3D MOTION CAPTURE DISTANCE, MOVEMENT, AND ANGLE FEATURES.

Type Region Feature How the feature is calculated # of dim.
Head-to-Phone Distance Distance from the forehead to the phone marker 1

Clavicle-to-Phone Distance Distance from the clavicle marker to the phone marker 1
Upper Shoulders-to-Phone Distance Distances from left and right shoulder markers to the phone marker 2

Head-Phone Angles Angles of the forehead to phone (attention) vector 2
Neck to forehead Angles Angles of the neck 2
Shoulder to elbow Angles Angles of the shoulders (arms) 4

Posture Upper Spine Angles of the upper (half of) spine 2
Lower Spine Angles of the lower (half of) spine 2

Sternum-to-Phone Distance Distance from the sternum marker to the phone 1
Center Clavicle-to-Elbows Distance Distance from the clavicle marker to either elbow 2

Sternum-to-Elbows Distance Distance from the sternum marker to either elbow 2
Elbow to wrist Angles Angles of the elbows 4

Forearm to wrist Angles Angles of the wrists 4
Hip-to-Phone Distance Distance from either hip marker to the phone 2
Hip-to-Elbows Distance Distance from either hip marker to either elbow 4

Body Lower Hip Angles Angles of the hips (legs) 4
Movement Knee Angles Angles of the knees 4

Ankle Angles Angles of the ankles 4
Total Number of Features 47

of our authentication results, and which broadly aligns with
the task parameters of handling a smartphone. This practice
is in alignment with current biomechanics standards, where
studies use few or as many segments as needed to address
their research problems (e.g., [54], [55], [53]).

We matched the user templates against the authentica-
tion (test) vectors using four methods: two one-class meth-
ods (Scaled Manhattan Distance (SM) [56] and One-Class
Support Vector Machine (OSVM) [57]), and two two-class
methods (Random Forest [58] (RF) and K-Nearest Neighbor
(KNN) [59]). We chose these methods because they were
among the most popular in the behavioral biometric literature
(see [60], [28], and Table I) and because they represent diver-
sity in their approaches to biometric matching: SM is distance-
based; OSVM builds a “region” enclosing the target data
points; RF represents both ensemble and induction learning
paradigms; and KNN represents the neighbor-based approach.
Further, RF and KNN represent supervised, and SM and
OSVM represent semi-supervised biometric authentication.

To implement SM, we used the approach followed in [9].
We used the scikit-learn [61] implementations of OSVM, RF,
and KNN. Each method was implemented in the verifier mode

(i.e., each user has her own trained model). For training the
two-class methods, we used the genuine examples in Session 1
and paired them with the impostor examples from 5 randomly-
chosen impostors, who were then excluded from the test
set. The parameter search and the preprocessing RF, KNN,
and OSVM were done as follows. For RF, we performed
a grid search over the “number of trees” (100 to 1000, in
increments of 100), and the “maximum features” (2, 3 ,
and 4) parameters. For KNN, we searched over the “number
of neighbors” parameter (2, 3, 4, 5). OSVM is sensitive to
outliers [62], and therefore we implemented outlier filtering
with Isolation Forest [63] (10% contamination) and reduced
the dimensionality of the feature set with Principal Component
Analysis (PCA) [64]. We then conducted a grid-search with
the ν parameter set to 0.05, 0.1, 0.2, and 0.3, the γ parameter
set to 0.001, 0.01, 0.1, and “scale”, and the number of PCA
components set to 2, 3, 4, and 5.2 We report the error rates
achieved from the best performing parameter values.3 To get
the scores, we used the predict_proba function for RF

2Before fixing the limits for the grid search, we experimented with high
values of γ, which did not perform well.

3The grid search was conducted to optimize HTER error metric.
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and KNN, and the decision_function for OSVM.

A. Biometric Viability of Posture and Body Movement
Features

Table IV shows the EERs of the touchscreen and phone
movement features listed in Table II. In the rest of the paper,
we refer to these features as baseline features. The same
table also shows the EERs of body movement features (upper,
center, and lower body features, listed in Table III) for both
walking and sitting postures. Our results show that posture
and body movement features consistently outperform baseline
features with very short (1- to 3-second) and short (5- and 10-
second) authentication windows, across both body postures,
and regardless of the body region. In particular, we saw a
consistent reduction in the EERs of the posture and body
movement features in comparison to the baseline features as
the authentication window length decreased, indicating that the
posture and body movement features are very well-suited at
capturing distinctive user characteristics within very short and
short authentication windows.

B. Feature-level Fusion of Baseline Features with Posture and
Body Movement Features

Our results show that fusing all three regions’ posture and
body movement features with the baseline features yields the
lowest EERs by a significant margin. The error reduction is
evident as shown in Figure 3. For very short authentication
windows, fusing features from all regions with baseline fea-
tures outperformed baseline features alone. This was the case
for both sitting and walking, and for all verification methods
used in our evaluation.

For all other authentication windows, fusing features from
all the regions with the baseline again outperformed baseline
features alone in both sitting and walking postures for three of
the verification methods: SM, RF, and KNN. With OSVM we
observed a relatively smaller reductions in EERs for walking.
Further, the EERs of OSVM increased as the authentication
window size increased for sitting (see Figure 3). We believe
that this behavior can be attributed to the low training sample
size. OSVMs are sensitive to low density of the target class
samples, which can drastically alter the “support” on which the
boundary is constructed, and deteriorate generalization [65],
[62]. In our case, as the authentication window size increased,
the number of genuine samples available for training de-
creased, thus impacting OSVM’s ability to generalize.

Finally, our fusion results in Figure 3 show that RF performs
best for short and very short authentication windows in both
sitting and walking, followed by SM. This indicates that
feature-level fusion can additionally benefit from using an
appropriate verification method (e.g., supervised vs. semi-
supervised), which is also consistent from the results reported
in benchmarking studies in behavioral biometrics where some
methods tend to outperform others (e.g., see [60], [6], [26]).

Table V highlights the contributions of features from each
individual region when they are fused with baseline features.
To this end, the table shows the reduction in EERs achieved
by fusing the baseline features with the posture and body

movement features, as compared to baseline features alone
(positive numbers represent a decrease in EER). For very
short authentication windows, fusing features from all regions
with baseline features outperformed baseline features alone in
each of the individual regions. Similarly, for all remaining
authentication windows, including the short authentication
windows, fusing features from all regions with the baseline
features outperformed baseline features fused with any of the
individual regions. This observation is true for SM, RF, and
KNN verifiers for walking.

OSVM continued to show sensitivity to the training sam-
ple size. As the authentication window sizes increased, the
feature-level fusion performance decreased for both sitting and
walking. In fact, in some instances OSVM was forced to use a
lower number of principal components due to the sample size.
We indicate these instances with “*” in tables IV and V. For
short authentication windows and above in the sitting posture,
fusion of features from all regions with baseline outperformed
individual regions for SM and RF methods, while features of
lower region fused with baseline performed slightly better with
OSVM and KNN.

In summary, our results indicate the following general
trends, especially in the context of lowering error rates for
very short and short authentication windows: (1) posture and
body movement features collected across the body contribute
to achieving the lowest EERs with very short and short
authentication windows; and (2) reductions in error rates can
also be achieved by using posture and body movement features
collected from individual body regions, albeit not at the same
level as with features from all regions.

C. Determining the Impact of Anthropometric Characteristics
on Posture and Body Movement Features

A body-static feature is loosely defined as a feature with a
significant component determined by the user’s anthropometric
(physiological) characteristics. For example, the arm length is
completely body-static, whereas elbow joint angle is not, even
though there might be a dependency between the latter and the
former. Under the assumption that anthropometric character-
istics carry biometric information, we evaluated the degree of
dependency between strictly behavioral features and anthropo-
metric characteristics. Specifically, we determined whether the
gain in mutual information from a particular behavioral feature
is dominated by some underlying body-static component. To
do so, we scaled each feature by the distance between the
elbow and the wrist, which is an anthropometric feature. We
then compared the mutual information of the scaled feature
with that of the original feature. For example, when the feature
sternum to left elbow distance was scaled by the wrist to elbow
distance mutual information was reduced by 9.84%. These
changes are presented in Table VI. If the mutual information
of the scaled feature is lower than that of the original feature,
then we concluded that the original feature had a body-static
component.

Table VI shows the features with the largest relative re-
duction in mutual information after the scaling while users
were sitting and walking. We used this ranking to determine
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TABLE IV
EERS FOR BASELINE DATA AND MOTION CAPTURE DATA FOR EACH REGION, SPLIT BY BODY MOTION TYPE FOR EACH CLASSIFIERS.

Method Posture Feature Set Window Length in Seconds
1 2 3 5 10 15 20 30 60

SM

Walk

Baseline Only 0.395 0.328 0.286 0.237 0.183 0.163 0.150 0.135 0.096
Upper Region Only 0.252 0.199 0.191 0.181 0.177 0.175 0.178 0.174 0.155
Center Region Only 0.228 0.154 0.142 0.127 0.120 0.119 0.120 0.117 0.108
Lower Region Only 0.261 0.199 0.190 0.179 0.174 0.167 0.168 0.168 0.155

Sit

Baseline Only 0.331 0.263 0.230 0.193 0.162 0.150 0.137 0.127 0.117
Upper Region Only 0.223 0.179 0.169 0.157 0.157 0.158 0.158 0.153 0.168
Center Region Only 0.220 0.163 0.149 0.135 0.134 0.133 0.134 0.131 0.127
Lower Region Only 0.220 0.166 0.150 0.135 0.134 0.134 0.135 0.132 0.135

OSVM

Walk

Baseline Only 0.368 0.317 0.296 0.258 0.238 0.213 0.219 0.191 0.183
Upper Region Only 0.233 0.230 0.230 0.236 0.234 0.231 0.237 0.239 0.210
Center Region Only 0.185 0.183 0.185 0.182 0.183 0.184 0.176 0.178 0.173
Lower Region Only 0.238 0.218 0.220 0.220 0.232 0.227 0.232 0.230 0.233

Sit

Baseline Only 0.286 0.259 0.242 0.217 0.204 0.177 0.185 0.169 0.156
Upper Region Only 0.243 0.239 0.220 0.224 0.226 0.218 0.225 0.211 0.220
Center Region Only 0.221 0.221 0.224 0.234 0.222 0.230 0.237 0.235 *0.250
Lower Region Only 0.162 0.162 0.162 0.162 0.162 0.163 0.163 0.159 *0.206

RF

Walk

Baseline Only 0.233 0.210 0.213 0.192 0.156 0.158 0.144 0.160 0.157
Upper Region Only 0.164 0.165 0.152 0.165 0.169 0.174 0.189 0.180 0.172
Center Region Only 0.111 0.116 0.132 0.100 0.120 0.140 0.125 0.140 0.145
Lower Region Only 0.153 0.168 0.167 0.165 0.173 0.166 0.165 0.187 0.208

Sit

Baseline Only 0.194 0.185 0.182 0.187 0.165 0.164 0.157 0.161 0.146
Upper Region Only 0.137 0.135 0.131 0.139 0.144 0.162 0.155 0.138 0.145
Center Region Only 0.099 0.089 0.151 0.124 0.107 0.099 0.105 0.110 0.130
Lower Region Only 0.150 0.169 0.169 0.170 0.159 0.149 0.180 0.181 0.153

KNN

Walk

Baseline Only 0.408 0.399 0.394 0.372 0.363 0.341 0.363 0.334 0.349
Upper Region Only 0.274 0.297 0.271 0.267 0.256 0.267 0.278 0.276 0.293
Center Region Only 0.284 0.287 0.255 0.287 0.244 0.258 0.239 0.259 0.277
Lower Region Only 0.268 0.270 0.271 0.276 0.243 0.238 0.235 0.248 0.258

Sit

Baseline Only 0.392 0.390 0.387 0.380 0.357 0.374 0.349 0.359 0.333
Upper Region Only 0.278 0.279 0.253 0.265 0.235 0.241 0.255 0.259 0.260
Center Region Only 0.282 0.283 0.297 0.277 0.256 0.274 0.293 0.281 0.286
Lower Region Only 0.228 0.254 0.242 0.243 0.251 0.187 0.202 0.230 0.172

TABLE V
DECREASE IN EERS BETWEEN BASELINE FEATURES AND FEATURE-LEVEL FUSION OF BASELINE WITH POSTURE AND BODY MOVEMENT FEATURES

USING VARYING CLASSIFIERS. POSITIVE NUMBERS INDICATE A DECREMENT OF EER COMPARED TO THE BASELINE.

Method Posture Feature-level Fusion Window Length in Seconds
1 2 3 5 10 15 20 30 60

SM

Walk

Upper Region + Baseline 0.124 0.126 0.112 0.092 0.064 0.053 0.044 0.037 0.016
Center Region + Baseline 0.161 0.170 0.147 0.123 0.087 0.077 0.066 0.049 0.023
Lower Region + Baseline 0.124 0.130 0.113 0.091 0.059 0.043 0.038 0.037 0.022
All Regions + Baseline 0.180 0.190 0.165 0.136 0.091 0.076 0.066 0.052 0.022

Sit

Upper Region + Baseline 0.096 0.082 0.067 0.045 0.025 0.017 0.009 0.004 0.001
Center Region + Baseline 0.106 0.097 0.083 0.065 0.043 0.036 0.025 0.019 0.016
Lower Region + Baseline 0.120 0.110 0.094 0.073 0.049 0.041 0.029 0.024 0.019
All Regions + Baseline 0.133 0.128 0.113 0.094 0.066 0.055 0.043 0.036 0.033

OSVM

Walk

Upper Region + Baseline 0.073 0.039 0.029 0.012 0.005 0.013 0.008 -0.011 0.003
Center Region + Baseline 0.122 0.084 0.073 0.053 0.044 0.024 0.024 0.024 0.027
Lower Region + Baseline 0.084 0.042 0.044 0.012 0.034 0.032 0.023 0.005 0.026
All Regions + Baseline 0.129 0.091 0.064 0.043 0.023 0.005 0.014 0.014 0.026

Sit

Upper Region + Baseline 0.021 0.009 0.001 -0.006 -0.001 -0.033 -0.029 -0.029 -0.064
Center Region + Baseline 0.040 0.020 0.004 -0.013 -0.011 -0.045 -0.028 -0.030 *-0.104
Lower Region + Baseline 0.062 0.050 0.056 0.041 0.018 -0.003 0.013 0.006 *-0.056
All Regions + Baseline 0.050 0.030 0.019 -0.010 -0.014 -0.039 -0.027 -0.025 *-0.082

RF

Walk

Upper Region + Baseline 0.101 0.089 0.083 0.079 0.016 0.036 0.032 0.031 0.043
Center Region + Baseline 0.135 0.117 0.123 0.096 0.073 0.080 0.041 0.058 0.058
Lower Region + Baseline 0.097 0.093 0.086 0.082 0.041 0.047 0.037 0.042 0.028
All Regions + Baseline 0.169 0.134 0.154 0.123 0.081 0.089 0.062 0.083 0.077

Sit

Upper Region + Baseline 0.095 0.074 0.079 0.086 0.056 0.040 0.045 0.037 0.033
Center Region + Baseline 0.122 0.116 0.106 0.106 0.066 0.065 0.063 0.064 0.025
Lower Region + Baseline 0.067 0.083 0.082 0.089 0.066 0.081 0.055 0.054 0.053
All Regions + Baseline 0.120 0.116 0.127 0.134 0.101 0.098 0.090 0.085 0.058

KNN

Walk

Upper Region + Baseline 0.140 0.139 0.145 0.130 0.116 0.107 0.107 0.073 0.091
Center Region + Baseline 0.137 0.151 0.126 0.100 0.103 0.094 0.123 0.094 0.097
Lower Region + Baseline 0.145 0.154 0.140 0.137 0.123 0.111 0.133 0.101 0.112
All Regions + Baseline 0.149 0.160 0.149 0.142 0.123 0.113 0.148 0.114 0.097

Sit

Upper Region + Baseline 0.146 0.158 0.144 0.136 0.119 0.140 0.141 0.136 0.092
Center Region + Baseline 0.105 0.099 0.117 0.113 0.083 0.131 0.066 0.098 0.059
Lower Region + Baseline 0.182 0.186 0.187 0.184 0.150 0.207 0.187 0.170 0.164
All Regions + Baseline 0.138 0.152 0.158 0.134 0.134 0.174 0.154 0.138 0.145

feature exclusion criteria for features dominated by body-
static components. By selecting features with low body-static
components, our analysis can focus on features that are more
likely to be inherently behavioral. The features exhibiting the

greatest reduction in mutual information were partitioned into
three distinct groups: the first group excluded the top 33% of
features (rows 1–4 for sitting, and rows 14–20 for walking in
Table VI) characterized by the highest loss in mutual informa-
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Fig. 3. EERs of baseline features vs. feature-level fusion of posture and body movement features from all regions in sit and walk conditions for each verifier.

tion; the second group excluded the top 66% of features (rows
1–8 for sitting, and rows 14–27 for walking in Table VI with
the highest loss; and the third group encompassed none of the
features listed in Table VI for sitting and walking. Figure 4
and Figure 5 show the resulting EERs with and without the
excluded features for walking and sitting for each verifier.

For walking, we achieved the lowest EERs when using all
features with very short and short authentication windows (see
Figure 4). Notably, this was also the case with 33%-, 66%-,
100%-exclusion feature sets, indicating that the behavioral as-
pects of posture and body movement features, when fused with
baseline features, can achieve error rates that are better than
the baseline features alone. However, this advantage gradually
dissipated as the authentication window sizes increased (e.g.,
at 60s). With OSVM in particular, the elimination of body-
static features along with reduction of training sample sizes
caused a significant deterioration of our fusion results.

For sitting, we achieved the lowest EERs when using all
features with very short and short authentication windows (see
Figure 5). As with walking, this was the case with 33%-,
66%-, 100%-exclusion feature sets, again indicating that the
behavioral aspects of posture and body movement features,
when fused with baseline features, can achieve error rates
that are better than baseline features alone. As with walking,

OSVM results deteriorated for longer authentication windows.

V. CAPTURING POSTURE AND BODY MOVEMENT WITH
SMARTPHONES AND WEARABLE DEVICES

The results presented in this paper demonstrate that it
is possible to reliably authenticate users within very short
authentication windows when smartphone behavioral features
are augmented with posture and body movement features.
However, deploying an external 3D motion capture system
with body markers for the purpose of continuous authentica-
tion is clearly impractical. To close this gap, in this section we
discuss how recent work in the area of body tracking using
smartphones and wearable devices can be leveraged to acquire
the posture and body movement features used in this work.

Liang et al. [66] introduce Pano+Track, a persistent au-
thentication model that uses hand and body tracking to verify
whether the user continues to have “custody” of their smart-
phone. Pano+Track uses a fisheye camera mounted on the
smartphone to capture both near-field information (to perform
hand gesture tracking), and full-scene information (to perform
body tracking). For body tracking, [66] implements body
keypoint prediction and skeleton estimation, and extracts three
body features: head orientation, head-to-camera distance, and
body-hand-phone connectivity. Pano+Track achieves 81.6%
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Fig. 4. Feature-level fusion results with each classifier for 33%-, 66%-, and 100%-exclusion features sets (Table VI) as compared to no exclusion, and the
baseline for walking posture.
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Fig. 5. Feature-level fusion results with each verifier for 33%-, 66%-, and 100%-exclusion features sets (Table VI) as compared to no exclusion, and the
baseline for sitting posture.

TABLE VI
EXCLUSION CRITERIA BY % CHANGE IN MUTUAL INFORMATION (MI) OF

POSTURE AND BODY MOVEMENT FEATURES. A NEGATIVE SIGN INDICATES
DECREASE IN MI AFTER CORRECTING FOR A BODY-STATIC COMPONENT.

Sitting
ID Feature % Change in MI
1 Clavicle to Right Elbow distance -21.402
2 Clavicle to Left Elbow distance -13.460
3 Sternum to Right Elbow distance -10.615
4 Sternum to Left Elbow distance -9.841
5 Right Hip to Left Elbow distance -5.579
6 Left Hip to Left Elbow distance -4.546
7 Left Shoulder to Phone distance -4.410
8 Left Hip to Right Elbow distance -4.319
9 Right Hip to Right Elbow distance -3.588
10 Right Elbow θ Angle -2.576
11 Right Shoulder to Phone distance -2.566
12 Upper Spine ϕ Angle -0.806
13 Left Shoulder θ Angle -0.162

Walking
14 Right Hip to Right Elbow distance -51.005
15 Right Knee ϕ Angle -48.096
16 Left Elbow ϕ Angle -43.298
17 Left Knee ϕ Angle -43.069
18 Head to Phone θ Angle -41.741
19 Right Elbow θ Angle -41.598
20 Left Wrist θ Angle -40.973
21 Upper Spine θ Angle -39.883
22 Right Ankle θ Angle -39.882
23 Left Ankle θ Angle -38.127
24 Neck θ Angle -28.826
25 Clavicle to Right Elbow distance -28.021
26 Left Elbow θ Angle -27.419
27 Clavicle to Left Elbow distance -24.692
28 Sternum to Right Elbow distance -24.618
29 Left Hip to Right Elbow distance -20.474
30 Left Hip to Phone distance -19.108
31 Sternum to Left Elbow distance -18.533
32 Right Hip to Left Elbow distance -17.444
33 Sternum to Phone distance -9.751
34 Right Hip to Phone distance -5.013

and 99.4% accuracies for body detection at approximately 4m
and less than 1m distances respectively, and an accuracy of
97.5% for hand gesture detection. Pano+Track also achieves
94.3% persistent authentication accuracy with 14 subjects,
with face biometric used as the initial point of authentication.

Ahuja et al. [67] propose “Pose-on-the-Go”, a full body
continuous pose estimation system that uses only smartphone
sensors and no additional hardware. This system performs
fusion of data from the smartphone’s front and rear cameras,
IMU sensors, and touchscreen, and utilizes inverse kinematics
(IK) SDK to estimate body tracking and pose data such as “an-
gle of the elbow joint”, “head orientation and position relative
to the phone”, “torso orientation”, “arm pose”, and leg and
locomotion poses. Ahuja et al. [67] also report the accuracy of
their pose estimation. Their system was able to achieve a mean
angular error of 6.4° head orientation (yaw, pitch, and roll),
26.1° for torso pose estimation, and a mean spatial euclidean
error of 18cm across three joints (wrist, shoulder, and elbow).
Further, [67] also report the angular wrist joint errors as 11.5,
9.1, and 8.9 degrees for yaw, pitch, and roll respectively.
Ahuja et al. [67] conclude that their system, though achieves
a coarse grained full body pose estimation, is welcome first
step towards achieving smartphone-based full body tracking
without adding any additional hardware to the smartphone.

Kim et al. [68] propose OddEyeCam, a vision-based smart-
phone system that tracks user’s body in space. To this end,
OddEyeCam continuously captures RGB images using a low-
resolution wide-angle (180°) camera, and depth information
using a narrow-field depth-sensing camera, both of which are
mounted on top of the smartphone’s screen. This data is fused
with the built-in smartphone accelerometer. Kim et al. eval-
uated OddEyeCam with data from 10 subjects and showed
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that it can effectively track body landmarks within the field of
view of the RGB camera with an average estimation error of
4.3cm. Given that popular smartphones already integrate both
a 3D depth sensors and a high-resolution wide-angle front-
facing cameras, we believe that OddEyeCam can be used to
accurately extract the position of a number of landmarks used
in this work with off-the-shelf smartphone hardware.

In [69], Tome et al. propose SelfPose, a system that uses a
downward looking fisheye camera mounted on an VR headset
to track body poses from an eco-centric perspective (i.e., the
camera faces the camera-wearer). SelfPose employs a multi-
branch deep encoder-decoder architecture that takes monocular
images from the fisheye camera, estimates a heat map, and
then uses an autoencoder-decoder to estimate body positions.
The output of the system is the 3D positional points of the
body joints. Further, SelfPose estimates joint rotations from
positional information. Tome et al. [69] quantified SelfPose’s
performance in terms of mean per joint position error and
reported the estimation errors in millimeter scale for head,
hand, arm, elbow, knee, foot, and ankle joints (see Table 3
in [69]), and noted that higher errors occur in the hands and
feet, which were the most occluded body regions with their
ego-centric tracking system.

In addition to the work listed in this above, several studies
demonstrate 3D full body pose tracking with smartphones
[70], [71] and other wearable devices [72], [73], [74], [75],
[76]. Further, there are many studies that perform partial
body tracking such as hand, wrist, hip, and leg tracking (see,
e.g., [77], [78], [79], [80]).

Combined, the studies presented in this section demonstrate
that it is feasible to track a wide variety of postures and
body movements using smartphones and wearable devices.
Several of the sensors needed for tracking are either ubiquitous
(e.g., front-facing camera and inertial sensors) or are avail-
able in many of high-end smartphones (e.g., depth sensors).
Further, the remaining specialized sensors can be built with
today’s technology (e.g., [68], [69]), and have been shown
to perform remarkably well in tracking postures and body
movements. Because none of these systems are as accurate as
3D motion capture equipment, one interesting open question
arises: to what extent do the errors introduced by smartphone-
and wearable-based body tracking impact authentication er-
ror rates? We hope that the results presented in this paper will
inspire future research to address this question.

VI. CONCLUSION

In this paper we demonstrate the benefits of incorporating
posture and body movement features in continuous smartphone
user authentication. Our findings indicate that these features
can substantially enhance the accuracy of behavioral biometric
systems, and reduce authentication latencies to 1–5 seconds.
As a result, our features improve the security of continuous
smartphone user authentication by stopping impostors within
seconds, i.e., before they can successfully carry out an attack.

We achieved the lowest error rates by combining features
from the upper, center, and lower regions of the user’s
body. Our results show that the EERs for touchscreen and

movement-based features are significantly reduced when com-
bined with body-motion features in both sitting and walking
postures. For instance, while sitting, the EER was reduced to
5.4% for a 5-second authentication window, compared to an
EER of 15.7% with a 60-second window when using swipe
features only, with the two-class verifier (Random Forest).
When the authentication window is further reduced to 1 sec-
ond, our EER increased to just 6.4% which, remarkably, is still
lower than what was achieved with 60-second baseline (swipe)
features. For reference, using baseline features alone the EER
was 23.3% for 1-second authentication latency. With the one-
class verifier (Scaled Manhattan Distance), we achieved 11.8%
EER for 3-second authentication window and 9.9% EER for
5-second window using our features, compared to 11.7% EER
for 60-second window using baseline features alone.
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APPENDIX

TABLE VII
MUTUAL INFORMATION (MI) OF TOP CUMULATIVE FEATURES FOR SITTING

Rank Feature MI Rank Feature MI Rank Feature MI
1 Left Ankle -Theta Angle 3.2775 32 Lower Spine -Phi Angle 1.9806 63 Velocity of Swipe 0.3301
2 Right Ankle -Theta Angle 3.2384 33 Right Elbow -Phi Angle 1.9781 64 Gyro x Mean 0.3152
3 Left Knee -Phi Angle 3.2149 34 Neck -Phi Angle 1.9388 65 Gyro y Min 0.3134
4 Right Knee -Phi Angle 3.1557 35 Left Wrist -Phi Angle 1.9350 66 Gyro x Energy 0.3012
5 Left Ankle -Phi Angle 3.0773 36 Left Wrist -Theta Angle 1.8514 67 Gyro x Max 0.2751
6 Right Ankle -Phi Angle 3.0610 37 Right Shoulder -Phi Angle 1.8216 68 Gyro y SD 0.2594
7 Right Hip(leg) -Theta Angle 3.0497 38 Head Phone distance 1.8125 69 Gyro x Min 0.2534
8 Left Hip(leg) -Theta Angle 3.0220 39 Neck -Theta Angle 1.8004 70 Accel x SD 0.2492
9 Left Knee -Theta Angle 3.0191 40 Clavicle to Phone distance 1.7912 71 Accel y SD 0.2426

10 Right Knee -Theta Angle 2.9635 41 Sternum to Phone distance 1.7898 72 Gyro x SD 0.2343
11 Left Hip(leg) -Phi Angle 2.9414 42 Right Wrist -Phi Angle 1.7771 73 Accel y Entropy 0.2203
12 Right Hip(leg) -Phi Angle 2.9384 43 Right Shoulder to Phone distance 1.7405 74 Accel x Entropy 0.2154
13 Left Hip to Left Elbow distance 2.7290 44 Right Shoulder -Theta Angle 1.6635 75 Accel z Entropy 0.2134
14 Right Hip to Left Elbow distance 2.7215 45 Right Elbow -Theta Angle 1.6492 76 Accel z SD 0.1950
15 Clavicle to Left Elbow distance 2.7106 46 Head to Phone -Theta Angle 1.6349 77 Time Duration of Swipe 0.1949
16 Sternum to Left Elbow distance 2.6311 47 Right Wrist -Theta Angle 1.3753 78 Gyro z Energy 0.1818
17 Upper Spine -Phi Angle 2.5278 48 Accel y Mean 0.8877 79 Gyro z SD 0.1781
18 Lower Spine -Theta angle 2.4447 49 Accel y Max 0.7899 80 Gyro x Entropy 0.1728
19 Left Hip to Right Elbow distance 2.4242 50 Accel y Min 0.7757 81 Gyro z Mean 0.1709
20 Right Hip to Right Elbow distance 2.3134 51 Accel z Mean 0.6930 82 Gyro y Entropy 0.1706
21 Left Shoulder -Phi Angle 2.2827 52 Accel y Energy 0.6382 83 Gyro z Entropy 0.1682
22 Left Elbow -Phi Angle 2.2788 53 Accel z Max 0.5855 84 Gyro z Max 0.1628
23 Clavicle to Right Elbow distance 2.2524 54 Accel x Mean 0.5591 85 Angular Sum of Swipe 0.1596
24 Left Shoulder -Theta Angle 2.2143 55 Accel x Max 0.5572 86 Gyro z Min 0.1595
25 Upper Spine -Theta Angle 2.2006 56 Accel z Min 0.5494 87 Accel y Kurtosis 0.0404
26 Left Hip to Phone distance 2.1602 57 Accel x Energy 0.4587 88 Gyro x Kurtosis 0.0339
27 Left Elbow -Theta Angle 2.0937 58 Accel x Min 0.4585 89 Accel x Kurtosis 0.0325
28 Left Shoulder to Phone distance 2.0775 59 Accel z Energy 0.4208 90 Accel z Kurtosis 0.0279
29 Right Hip to Phone distance 2.0665 60 Gyro y Mean 0.3814 91 Gyro y Kurtosis 0.0278
30 Sternum to Right Elbow distance 2.0406 61 Gyro y Energy 0.3791 92 Length of Swipe 0.0217
31 Head to Phone -Phi Angle 2.0311 62 Gyro y Max 0.3399 93 Gyro z Kurtosis 0.0159

TABLE VIII
MUTUAL INFORMATION (MI) OF TOP CUMULATIVE FEATURES FOR WALKING

Rank Feature MI Rank Feature MI Rank Feature MI
1 Clavicle to Left Elbow distance 2.1658 32 Left Shoulder -Phi Angle 1.2838 63 Accel y Entropy 0.1962
2 Clavicle to Right Elbow distance 2.1585 33 Right Shoulder -Phi Angle 1.2577 64 Gyro y Min 0.1916
3 Sternum to Left Elbow distance 1.9829 34 Head to Phone -Phi Angle 1.2562 65 Accel x Entropy 0.1899
4 Right Hip to Left Elbow distance 1.8950 35 Neck -Phi Angle 1.1762 66 Time Duration of Swipe 0.1856
5 Sternum to Right Elbow distance 1.8790 36 Right Hip(leg) -Theta Angle 1.0918 67 Gyro y Mean 0.1855
6 Left Hip to Right Elbow distance 1.7596 37 Left Hip(leg) -Theta Angle 1.0595 68 Gyro x Energy 0.1833
7 Left Hip to Left Elbow distance 1.7564 38 Right Knee -Theta Angle 0.8329 69 Gyro x Entropy 0.1777
8 Right Hip to Right Elbow distance 1.7121 39 Lower Spine -Theta angle 0.8109 70 Gyro y Max 0.1754
9 Left Shoulder to Phone distance 1.6542 40 Left Knee -Theta Angle 0.7973 71 Gyro y Entropy 0.1732

10 Left Ankle -Theta Angle 1.6438 41 Lower Spine -Phi Angle 0.7797 72 Accel x Energy 0.1671
11 Right Elbow -Theta Angle 1.6387 42 Left Hip(leg) -Phi Angle 0.6494 73 Gyro x SD 0.1651
12 Left Wrist -Theta Angle 1.6269 43 Left Ankle -Phi Angle 0.6363 74 Gyro z Entropy 0.1644
13 Left Elbow -Phi Angle 1.6247 44 Right Hip(leg) -Phi Angle 0.6111 75 Gyro x Mean 0.1635
14 Right Ankle -Theta Angle 1.6141 45 Right Ankle -Phi Angle 0.5120 76 Gyro x Max 0.1557
15 Left Elbow -Theta Angle 1.5946 46 Accel y Mean 0.4498 77 Accel z SD 0.1511
16 Left Hip to Phone distance 1.5642 47 Accel y Min 0.3847 78 Angular Sum of Swipe 0.1418
17 Neck -Theta Angle 1.5407 48 Accel y Max 0.3469 79 Gyro x Min 0.1371
18 Right Hip to Phone distance 1.5371 49 Left Knee -Phi Angle 0.3365 80 Gyro z SD 0.1337
19 Right Wrist -Phi Angle 1.5003 50 Right Knee -Phi Angle 0.3337 81 Accel y SD 0.1267
20 Left Wrist -Phi Angle 1.4892 51 Velocity of Swipe 0.3030 82 Accel x SD 0.1129
21 Left Shoulder -Theta Angle 1.4824 52 Accel y Energy 0.2779 83 Gyro z Energy 0.1066
22 Right Elbow -Phi Angle 1.4669 53 Accel z Mean 0.2612 84 Gyro z Max 0.0990
23 Head Phone distance 1.4652 54 Accel z Max 0.2435 85 Gyro z Mean 0.0850
24 Upper Spine -Theta Angle 1.4554 55 Accel x Mean 0.2356 86 Gyro z Min 0.0842
25 Head to Phone -Theta Angle 1.4319 56 Accel z Min 0.2340 87 Gyro x Kurtosis 0.0396
26 Right Shoulder -Theta Angle 1.4254 57 Gyro y Energy 0.2261 88 Accel x Kurtosis 0.0387
27 Sternum to Phone distance 1.4235 58 Accel x Max 0.2129 89 Gyro y Kurtosis 0.0362
28 Clavicle to Phone distance 1.4179 59 Accel x Min 0.2060 90 Accel z Kurtosis 0.0342
29 Right Shoulder to Phone distance 1.3992 60 Accel z Entropy 0.2039 91 Accel y Kurtosis 0.0281
30 Right Wrist -Theta Angle 1.3601 61 Accel z Energy 0.2006 92 Length of Swipe 0.0176
31 Upper Spine -Phi Angle 1.3335 62 Gyro y SD 0.1996 93 Gyro z Kurtosis 0.0123
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TABLE IX
EERS FOR BASELINE DATA AND MOTION CAPTURE DATA FOR EACH REGION, SPLIT BY BODY MOTION TYPE FOR EACH CLASSIFIERS.

Method Posture Feature Set Window Length in Seconds
1 2 3 5 10 15 20 30 60

SM

Walk

Baseline Only 0.396 0.327 0.290 0.239 0.186 0.165 0.148 0.139 0.105
Upper Region Only 0.246 0.171 0.152 0.131 0.114 0.108 0.098 0.098 0.085
Center Region Only 0.201 0.104 0.086 0.061 0.049 0.039 0.035 0.034 0.025
Lower Region Only 0.272 0.191 0.168 0.140 0.119 0.109 0.103 0.090 0.083

Sit

Baseline Only 0.337 0.269 0.239 0.207 0.164 0.150 0.140 0.123 0.115
Upper Region Only 0.216 0.155 0.143 0.124 0.105 0.101 0.101 0.093 0.091
Center Region Only 0.210 0.142 0.129 0.106 0.086 0.082 0.082 0.079 0.079
Lower Region Only 0.226 0.174 0.165 0.146 0.133 0.130 0.130 0.128 0.126

OSVM

Walk

Baseline Only 0.422 0.378 0.338 0.297 0.258 0.240 0.228 0.236 0.232
Upper Region Only 0.246 0.242 0.227 0.211 0.252 0.229 0.215 0.209 0.186
Center Region Only 0.140 0.137 0.195 0.175 0.168 0.150 0.139 0.131 0.135
Lower Region Only 0.266 0.246 0.233 0.250 0.222 0.206 0.179 0.180 0.171

Sit

Baseline Only 0.323 0.296 0.272 0.254 0.218 0.210 0.202 0.226 0.209
Upper Region Only 0.233 0.228 0.222 0.220 0.207 0.201 0.223 0.217 0.201
Center Region Only 0.207 0.235 0.211 0.209 0.205 0.217 0.224 0.222 0.230
Lower Region Only 0.207 0.203 0.200 0.195 0.200 0.200 0.197 0.207 0.191

RF

Walk

Baseline Only 0.237 0.219 0.207 0.197 0.181 0.173 0.167 0.165 0.161
Upper Region Only 0.133 0.134 0.131 0.134 0.130 0.142 0.146 0.146 0.172
Center Region Only 0.085 0.082 0.081 0.083 0.095 0.097 0.098 0.110 0.125
Lower Region Only 0.168 0.172 0.168 0.162 0.162 0.160 0.164 0.161 0.180

Sit

Baseline Only 0.197 0.182 0.172 0.163 0.156 0.147 0.144 0.136 0.140
Upper Region Only 0.117 0.125 0.131 0.127 0.136 0.129 0.133 0.130 0.143
Center Region Only 0.093 0.080 0.112 0.100 0.114 0.114 0.122 0.132 0.119
Lower Region Only 0.159 0.147 0.146 0.164 0.163 0.162 0.161 0.169 0.178

KNN

Walk

Baseline Only 0.430 0.425 0.417 0.405 0.388 0.384 0.380 0.371 0.358
Upper Region Only 0.203 0.214 0.217 0.226 0.217 0.232 0.247 0.241 0.221
Center Region Only 0.155 0.162 0.168 0.162 0.155 0.147 0.159 0.175 0.181
Lower Region Only 0.198 0.209 0.207 0.202 0.196 0.192 0.206 0.201 0.204

Sit

Baseline Only 0.421 0.414 0.415 0.412 0.401 0.384 0.356 0.361 0.326
Upper Region Only 0.234 0.233 0.240 0.247 0.248 0.244 0.248 0.249 0.251
Center Region Only 0.198 0.199 0.212 0.215 0.229 0.229 0.229 0.232 0.255
Lower Region Only 0.240 0.236 0.229 0.225 0.221 0.215 0.210 0.209 0.206

This section presents updated authentication results, based on the use of a different type of content-aware alignment algorithm
between the phone’s motion sensor data and the motion capture system. Specifically, we used the motion-capture sensors placed
on the smartphone to align the phone’s motion sensor data with the motion capture data. This improved alignment reduces
inaccuracies in the feature extraction process. By addressing this misalignment, the phone and body movement data are now
better synchronized, resulting in more accurate features, which in turn led to reduced EERs across different classifiers and
body-motion types.

Table IX present the Equal Error Rates (EERs) for baseline data, which includes smartphone swipe and phone-movement
data, and compares it with motion capture data for each body region (upper, center, lower) during different activities (sitting
or walking) across varying classifiers and time windows (1-60 seconds). Table X presents the decrease in Equal Error Rates
(EERs) when comparing the baseline features (e.g., smartphone swipe and phone-movement data) to the feature-level fusion
of baseline features with posture and body movement features. This comparison is performed using different classifiers.

While these changes improve overall accuracies the main conclusions of the paper remain unchanged, i.e., posture and body
movement features can reduce error rates and authentication latencies to as low as 1-5 seconds. The improvements seen in
Table IX, X confirm and strengthen the original conclusions by showing even lower error rates as a result of more accurate
alignment.
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Fig. 6. EERs of baseline features vs. feature-level fusion of posture and body movement features from all regions in sit and walk conditions for each verifier.
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Fig. 7. Feature-level fusion results with each classifier for 33%-, 66%-, and 100%-exclusion features sets (Table VI) as compared to no exclusion, and the
baseline for walking posture.
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Fig. 8. Feature-level fusion results with each verifier for 33%-, 66%-, and 100%-exclusion features sets (Table VI) as compared to no exclusion, and the
baseline for sitting posture.
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TABLE X
DECREASE IN EERS BETWEEN BASELINE FEATURES AND FEATURE-LEVEL FUSION OF BASELINE WITH POSTURE AND BODY MOVEMENT FEATURES

USING VARYING CLASSIFIERS. POSITIVE NUMBERS INDICATE A DECREMENT OF EER COMPARED TO THE BASELINE.

Method Posture Feature-level Fusion Window Length in Seconds
1 2 3 5 10 15 20 30 60

SM

Walk

Upper Region + Baseline 0.117 0.133 0.130 0.118 0.099 0.096 0.084 0.086 0.068
Center Region + Baseline 0.174 0.197 0.187 0.167 0.136 0.128 0.117 0.112 0.090
Lower Region + Baseline 0.110 0.131 0.126 0.116 0.104 0.096 0.093 0.094 0.079
All Regions + Baseline 0.196 0.222 0.210 0.186 0.150 0.137 0.129 0.122 0.095

Sit

Upper Region + Baseline 0.110 0.106 0.097 0.090 0.072 0.069 0.065 0.049 0.057
Center Region + Baseline 0.123 0.120 0.107 0.099 0.082 0.076 0.072 0.058 0.057
Lower Region + Baseline 0.115 0.100 0.082 0.070 0.047 0.038 0.031 0.018 0.014
All Regions + Baseline 0.139 0.136 0.118 0.110 0.089 0.080 0.071 0.057 0.052

OSVM

Walk

Upper Region + Baseline 0.056 0.051 0.035 0.019 0.021 0.017 0.026 0.034 0.024
Center Region + Baseline 0.119 0.115 0.116 0.088 0.086 0.078 0.078 0.098 0.076
Lower Region + Baseline 0.021 0.028 0.034 0.030 0.042 0.039 0.052 0.082 0.044
All Regions + Baseline 0.084 0.081 0.069 0.054 0.051 0.074 0.059 0.091 0.048

Sit

Upper Region + Baseline 0.038 0.042 0.028 0.023 0.016 0.015 0.016 -0.008 -0.009
Center Region + Baseline 0.064 0.053 0.050 0.033 0.017 0.029 0.029 -0.007 -0.034
Lower Region + Baseline 0.077 0.064 0.053 0.044 0.026 0.016 0.020 0.010 -0.009
All Regions + Baseline 0.069 0.051 0.031 0.065 0.004 0.033 -0.027 0.009 -0.026

RF

Walk

Upper Region + Baseline 0.115 0.104 0.094 0.085 0.076 0.066 0.060 0.053 0.051
Center Region + Baseline 0.161 0.150 0.137 0.123 0.098 0.084 0.077 0.066 0.059
Lower Region + Baseline 0.102 0.092 0.086 0.083 0.072 0.055 0.051 0.046 0.044
All Regions + Baseline 0.186 0.169 0.157 0.146 0.122 0.112 0.102 0.096 0.091

Sit

Upper Region + Baseline 0.096 0.080 0.072 0.062 0.055 0.042 0.045 0.041 0.039
Center Region + Baseline 0.135 0.117 0.107 0.093 0.083 0.076 0.073 0.062 0.060
Lower Region + Baseline 0.076 0.069 0.068 0.066 0.063 0.063 0.054 0.046 0.048
All Regions + Baseline 0.139 0.125 0.117 0.108 0.100 0.096 0.094 0.085 0.084

KNN

Walk

Upper Region + Baseline 0.182 0.172 0.161 0.164 0.167 0.180 0.176 0.185 0.179
Center Region + Baseline 0.240 0.219 0.212 0.213 0.231 0.250 0.256 0.259 0.245
Lower Region + Baseline 0.188 0.189 0.188 0.192 0.204 0.215 0.206 0.216 0.201
All Regions + Baseline 0.244 0.256 0.261 0.261 0.258 0.261 0.252 0.241 0.241

Sit

Upper Region + Baseline 0.188 0.179 0.177 0.179 0.178 0.163 0.140 0.136 0.090
Center Region + Baseline 0.215 0.202 0.195 0.190 0.185 0.166 0.138 0.130 0.085
Lower Region + Baseline 0.208 0.208 0.212 0.214 0.204 0.198 0.174 0.177 0.137
All Regions + Baseline 0.199 0.194 0.199 0.197 0.190 0.185 0.154 0.164 0.138


